論文の概要: From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis
- arxiv url: http://arxiv.org/abs/2506.08899v1
- Date: Tue, 10 Jun 2025 15:25:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.67541
- Title: From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis
- Title(参考訳): 法文から LLM による決定可能なデオン論理へ:自動意味解析における一考察
- Authors: Elias Horner, Cristinel Mateis, Guido Governatori, Agata Ciabattoni,
- Abstract要約: 本稿では,大言語モデル(LLM)を用いた法文の自動意味解析への新しいアプローチを提案する。
本稿では、複雑な規範言語を原子スニペットに分割し、デオン規則を抽出し、それらを構文的・意味的コヒーレンスとして評価する構造化パイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs), targeting their transformation into formal representations in Defeasible Deontic Logic (DDL). We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. Our methodology is evaluated across various LLM configurations, including prompt engineering strategies, fine-tuned models, and multi-stage pipelines, focusing on legal norms from the Australian Telecommunications Consumer Protections Code. Empirical results demonstrate promising alignment between machine-generated and expert-crafted formalizations, showing that LLMs - particularly when prompted effectively - can significantly contribute to scalable legal informatics.
- Abstract(参考訳): 本稿では,大言語モデル (LLM) を用いた法文の自動意味解析への新たなアプローチを提案する。
本稿では、複雑な規範言語を原子スニペットに分割し、デオン規則を抽出し、それらを構文的・意味的コヒーレンスとして評価する構造化パイプラインを提案する。
本手法は, オーストラリアの電気通信消費者保護法に基づく法則に着目し, 迅速な技術戦略, 微調整モデル, 多段階パイプラインなど, 様々なLCM構成で評価されている。
実証的な結果は、機械生成と専門家による形式化の間に有望な整合性を示し、LLM(特に効果的に刺激された場合)がスケーラブルな法的な情報伝達に大きく貢献することを示している。
関連論文リスト
- Robust Hypothesis Generation: LLM-Automated Language Bias for Inductive Logic Programming [3.641087660577424]
大規模言語モデル(LLM)とインダクティブ論理プログラミング(ILP)を組み合わせたマルチエージェントシステムを統合する新しいフレームワークを提案する。
我々のLLMエージェントは、構造化されたシンボル語彙(述語)と関係テンプレートを自律的に定義する。
多様な、挑戦的なシナリオの実験は、優れたパフォーマンスを検証し、自動化され、説明可能で、検証可能な仮説生成のための新しいパスを舗装する。
論文 参考訳(メタデータ) (2025-05-27T17:53:38Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - DECIDER: A Dual-System Rule-Controllable Decoding Framework for Language Generation [57.07295906718989]
制約付き復号法は,事前訓練された大言語(Ms と PLMs)が生成するテキストの意味やスタイルを,推論時に様々なタスクに対して制御することを目的としている。
これらの方法は、しばしば、欲求的かつ明示的にターゲットを選択することによって、もっともらしい連続を導く。
認知二重プロセス理論に着想を得て,新しい復号化フレームワークDECDERを提案する。
論文 参考訳(メタデータ) (2024-03-04T11:49:08Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
このアプローチは抽象弁証法フレームワークのコンピュータ支援分析を可能にする。
応用例としては、メタ理論的性質の形式的解析と検証がある。
論文 参考訳(メタデータ) (2023-12-08T09:32:26Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。