GFRIEND: Generative Few-shot Reward Inference through EfficieNt DPO
- URL: http://arxiv.org/abs/2506.08965v1
- Date: Tue, 10 Jun 2025 16:37:13 GMT
- Title: GFRIEND: Generative Few-shot Reward Inference through EfficieNt DPO
- Authors: Yiyang Zhao, Huiyu Bai, Xuejiao Zhao,
- Abstract summary: The ability to train high-performing reward models with few-shot data is critical for enhancing the efficiency and scalability of Reinforcement Learning from Human Feedback.<n>We propose a data augmentation and expansion framework that enables generative reward models trained on small datasets to achieve comparable performance to those trained on large-scale datasets.
- Score: 3.189559302776161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to train high-performing reward models with few-shot data is critical for enhancing the efficiency and scalability of Reinforcement Learning from Human Feedback (RLHF). We propose a data augmentation and expansion framework that enables generative reward models trained on small datasets to achieve comparable performance to those trained on large-scale datasets. Traditional methods to train a generative reward model, such as Direct Preference Optimization (DPO), are constrained by inefficiencies in sample pairing and limited data diversity. This work introduces preference refinement, which employs Chain-of-Thought (CoT) sampling to uncover diverse and high-quality preference relationships. It also incorporates a perplexity-based scoring mechanism to assign nuanced preference levels and utilizes Multi-level Direct Preference Optimization (M-DPO) to enable the model to capture finer-grained preference differences between samples. Experimental results demonstrate that the proposed method significantly enhances data efficiency and model performance, enabling reward models trained in a few-shot setting to achieve results on par with those trained on large-scale datasets. This study underscores the potential of data-efficient strategies in advancing reward model optimization, offering a robust solution for low-resource RLHF applications.
Related papers
- Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO [51.22869332661607]
We decompose the performance gap between reinforcement learning from human feedback and direct preference optimization under a representation gap.<n>We show that RLHF, DPO, or online DPO can outperform one another depending on the type of model mis-specifications.
arXiv Detail & Related papers (2025-05-26T09:54:02Z) - More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment [80.04449725137177]
Direct Preference Optimization (DPO) has emerged as a simple, yet effective alternative to reinforcement learning from human feedback.<n>Our study reveals a striking, safety-specific phenomenon associated with DPO alignment.<n>Using solely self-generated responses for both chosen and rejected pairs significantly outperforms configurations that incorporate responses from stronger models.
arXiv Detail & Related papers (2025-04-03T00:36:40Z) - Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.<n>By leveraging influence scores, we effectively identify the most impactful data for system improvement.<n>We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
A reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs)
Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback.
arXiv Detail & Related papers (2024-06-06T15:23:30Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.