Optimizing Superconducting Three-Qubit Gates for Surface-Code Error Correction
- URL: http://arxiv.org/abs/2506.09028v1
- Date: Tue, 10 Jun 2025 17:54:22 GMT
- Title: Optimizing Superconducting Three-Qubit Gates for Surface-Code Error Correction
- Authors: Stephan Tasler, Josias Old, Lukas Heunisch, Verena Feulner, Timo Eckstein, Markus Müller, Michael J. Hartmann,
- Abstract summary: We design a 3-qubit CZZ gate for superconducting transmon qubits that maps the parity of two data qubits onto one measurement qubit in a single step.<n>We use an error model obtained from the microscopic gate simulation to systematically suppress Pauli errors that are particularly harmful to the QEC protocol.<n>We find that for the rotated surface code, the implementation of CZZ gates increases the error threshold by nearly 50% to $approx 1.2,%$ and decreases the logical error rate, in the experimental relevant regime, by up to one order of magnitude.
- Score: 1.1323522905584675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum error correction (QEC) is one of the crucial building blocks for developing quantum computers that have significant potential for reaching a quantum advantage in applications. Prominent candidates for QEC are stabilizer codes for which periodic readout of stabilizer operators is typically implemented via successive two-qubit entangling gates, and is repeated many times during a computation. To improve QEC performance, it is thus beneficial to make the stabilizer readout faster and less prone to fault-tolerance-breaking errors. Here we design a 3-qubit CZZ gate for superconducting transmon qubits that maps the parity of two data qubits onto one measurement qubit in a single step. We find that the gate can be executed in a duration of $35\,$ns with a fidelity of F$=99.96 \, \%$. To optimize the gate, we use an error model obtained from the microscopic gate simulation to systematically suppress Pauli errors that are particularly harmful to the QEC protocol. Using this error model, we investigate the implementation of this 3-qubit gate in a surface code syndrome readout schedule. We find that for the rotated surface code, the implementation of CZZ gates increases the error threshold by nearly 50\% to $\approx 1.2\,\%$ and decreases the logical error rate, in the experimental relevant regime, by up to one order of magnitude, compared to the standard CZ readout protocol. We also show that for the unrotated surface code, strictly fault-tolerant readout schedules can be found. This opens a new perspective for below-threshold surface-code error correction, where it can be advantageous to use multi-qubit gates instead of two-qubit gates to obtain a better QEC performance.
Related papers
- Low-depth quantum error correction via three-qubit gates in Rydberg atom arrays [0.0]
Quantum error correction (QEC) requires the execution of deep quantum circuits with large numbers of physical qubits to protect information against errors.<n>We show how to realize fast and efficient surface code stabilizer using only two $CZ$ gates -- instead of four $CZ$ -- while preserving fault tolerance.
arXiv Detail & Related papers (2025-07-08T15:37:48Z) - Fault-Tolerant Stabilizer Measurements in Surface Codes with Three-Qubit Gates [1.351813974961217]
We show that stabilizer measurement circuits for unrotated surface codes can be fault-tolerant using single auxiliary qubits and three-qubit gates.<n>These gates enable lower-depth circuits leading to fewer fault locations and potentially shorter QEC cycle times.
arXiv Detail & Related papers (2025-06-10T17:54:23Z) - Demonstrating dynamic surface codes [138.1740645504286]
We experimentally demonstrate three time-dynamic implementations of the surface code.<n>First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three.<n>Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors.<n>Third, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead.
arXiv Detail & Related papers (2024-12-18T21:56:50Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
We present the parallelization of pre-calibrated pulses at the hardware level as an easy-to-implement strategy to optimize quantum gates.
We show that such parallelization leads to improved fidelity and gate time reduction, when compared to serial concatenation.
arXiv Detail & Related papers (2023-12-20T19:00:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms [0.0]
We implement the controlled-Z gate and its threebit qubit generalization, the C$$Z gate, for Rydberg atoms in the blockade regime.
For the CZ gate, the time-optimal implementation corresponds to a global laser pulse that does not require single site addressability of the atoms.
We employ quantum optimal control techniques to mitigate errors arising due to the finite lifetime of Rydberg states and finite blockade strengths.
arXiv Detail & Related papers (2022-02-02T08:03:59Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.