ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
- URL: http://arxiv.org/abs/2506.09050v1
- Date: Tue, 10 Jun 2025 17:59:56 GMT
- Title: ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
- Authors: Yuki Imajuku, Kohki Horie, Yoichi Iwata, Kensho Aoki, Naohiro Takahashi, Takuya Akiba,
- Abstract summary: We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests.<n>ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution.<n>Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations.
- Score: 1.6932802756478724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
Related papers
- LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming? [88.29001498765629]
Large language models (LLMs) now outperform elite humans in competitive programming.<n>We revisit this claim, examining how LLMs differ from human experts and where limitations still remain.<n>We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI.<n>A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions.
arXiv Detail & Related papers (2025-06-13T16:29:09Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Efficiently Scaling LLM Reasoning with Certaindex [25.549811985276488]
Test-time reasoning algorithms can wastefully generate many tokens without improving accuracy.<n>We introduce Certaindex, an algorithm-agnostic metric measuring when further computation is unlikely to alter the final result.<n>Certaindex is lightweight, can accelerate reasoning program inference via early exit, and enables dynamic token allocation.
arXiv Detail & Related papers (2024-12-30T14:57:53Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Quantum Algorithm Exploration using Application-Oriented Performance
Benchmarks [0.0]
The QED-C suite of Application-Oriented Benchmarks provides the ability to gauge performance characteristics of quantum computers.
We investigate challenges in broadening the relevance of this benchmarking methodology to applications of greater complexity.
arXiv Detail & Related papers (2024-02-14T06:55:50Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Robust expected improvement for Bayesian optimization [1.8130068086063336]
We propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework.
We illustrate and draw comparisons to several competitors on benchmark synthetic exercises and real problems of varying complexity.
arXiv Detail & Related papers (2023-02-16T22:34:28Z) - An Efficient Merge Search Matheuristic for Maximising the Net Present
Value of Project Schedules [5.10800491975164]
Resource constrained project scheduling is an important optimisation problem with many practical applications.
We propose a new math-heuristic algorithm based on Merge Search and parallel computing to solve the resource constrained project scheduling.
arXiv Detail & Related papers (2022-10-20T13:30:23Z) - Design-Bench: Benchmarks for Data-Driven Offline Model-Based
Optimization [82.02008764719896]
Black-box model-based optimization problems are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots.
We present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods.
Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics.
arXiv Detail & Related papers (2022-02-17T05:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.