論文の概要: FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
- arxiv url: http://arxiv.org/abs/2506.09081v1
- Date: Tue, 10 Jun 2025 04:19:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.658779
- Title: FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
- Title(参考訳): FlagEvalMM: 総合的マルチモーダルモデル評価のための柔軟なフレームワーク
- Authors: Zheqi He, Yesheng Liu, Jing-shu Zheng, Xuejing Li, Richeng Xuan, Jin-Ge Yao, Xi Yang,
- Abstract要約: マルチモーダルモデルの評価を目的としたオープンソースの評価フレームワークであるFragEvalMMを提案する。
独立評価サービスを通じて評価からモデル推論を分離する。
FlagEvalMMは、モデルの強みと制限に関する正確で効率的な洞察を提供する。
- 参考スコア(独自算出の注目度): 4.751923055605684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible athttps://github.com/flageval-baai/FlagEvalMM.
- Abstract(参考訳): 視覚的質問応答, テキスト・ツー・イメージ・ビデオ生成, 画像テキスト検索など, 多様な視覚言語理解・生成タスクにおいて, マルチモーダルモデルを包括的に評価するためのオープンソースの評価フレームワークであるFragEvalMMを提案する。
モデル推論を独立評価サービスを通じて評価から切り離し、フレキシブルなリソース割り当てを可能にし、新しいタスクやモデルのシームレスな統合を可能にします。
さらに、FragEvalMMは高度な推論アクセラレーションツール(例えば、vLLM、SGLang)と非同期データローディングを使用して、評価効率を大幅に向上させる。
大規模な実験により、FragEvalMMはモデルの強度と限界に関する正確かつ効率的な洞察を提供し、マルチモーダルな研究を進める上で貴重なツールであることが示された。
このフレームワークはhttps://github.com/flageval-baai/FlagEvalMMで公開されている。
関連論文リスト
- ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation [48.24550684610705]
ArtifactsBenchは自動ビジュアルコード生成評価のためのフレームワークである。
我々のフレームワークは、生成した各アーティファクトをレンダリングし、時間的スクリーンショットを通してその動的な振る舞いをキャプチャする。
我々は1,825の多様なタスクの新しいベンチマークを構築し、30以上の主要な大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2025-07-07T12:53:00Z) - Universal Retrieval for Multimodal Trajectory Modeling [12.160448446091607]
軌道データは、AIエージェント能力を向上する大きな可能性を秘めている。
本稿では,ユニバーサル検索とエージェント中心軌道モデリングのギャップを埋めるマルチモーダル軌道検索手法を提案する。
論文 参考訳(メタデータ) (2025-06-27T09:50:38Z) - What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities [56.646832992178105]
我々は、制御可能な複雑性のタスクを合成するための自動パイプラインを備えたクロスプラットフォームグラフベースのベンチマークであるOmniBenchを紹介した。
OmniEvalは、サブタスクレベルの評価、グラフベースのメトリクス、および10機能にわたる包括的なテストを含む多次元評価フレームワークである。
我々のデータセットには、20のシナリオにわたる36万のグラフ構造化タスクが含まれており、人間の受け入れ率は91%に達する。
論文 参考訳(メタデータ) (2025-06-10T15:59:38Z) - EvalGIM: A Library for Evaluating Generative Image Models [26.631349186382664]
テキストから画像への生成モデルを評価するためのライブラリであるEvalGIMを紹介する。
EvalGIMは、品質、多様性、一貫性を測定するために使用されるデータセットとメトリクスを幅広くサポートする。
EvalGIMには、テキストから画像への生成モデルのための2つの新しい分析手法を導入する評価演習も含まれている。
論文 参考訳(メタデータ) (2024-12-13T23:15:35Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models [71.8065384742686]
LMMS-EVALは50以上のタスクと10以上のモデルを持つ統一的で標準化されたマルチモーダルベンチマークフレームワークである。
LMMS-EVAL LITEは、カバー範囲と効率の両方を重視したプルーニング評価ツールキットである。
マルチモーダルなLIVEBENCHは、ニュースやオンラインフォーラムを継続的に更新し、野生におけるモデルの一般化能力を評価する。
論文 参考訳(メタデータ) (2024-07-17T17:51:53Z) - UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs [74.1976921342982]
本稿では,ユーザフレンドリな評価フレームワークであるUltraEvalを紹介し,その軽量性,包括性,モジュール性,効率性を特徴とする。
その結果のコンポーザビリティにより、統一された評価ワークフロー内で、さまざまなモデル、タスク、プロンプト、ベンチマーク、メトリクスを自由に組み合わせることができる。
論文 参考訳(メタデータ) (2024-04-11T09:17:12Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEvalは、大規模言語モデルの信頼性と効率的な自動評価を可能にするために設計された、モジュール化されたスケーラブルなフレームワークである。
FreeEvalの統一された抽象化は、統合を単純化し、多様な評価方法論の透明性を改善します。
このフレームワークは、人間の評価やデータ汚染検出などのメタ評価技術を統合し、動的評価モジュールとともに、評価結果の公平性を高める。
論文 参考訳(メタデータ) (2024-04-09T04:17:51Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
視覚言語モデルのマルチモーダル能力を評価するためのベンチマークであるMMBenchを提案する。
MMBenchは、よく設計された品質制御スキームで慎重にキュレートされている。
MMBenchは英語版と中国語版の両方で複数の質問を取り入れている。
論文 参考訳(メタデータ) (2023-07-12T16:23:09Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。