論文の概要: Low-Rank Augmented Implicit Neural Representation for Unsupervised High-Dimensional Quantitative MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2506.09100v1
- Date: Tue, 10 Jun 2025 15:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.723592
- Title: Low-Rank Augmented Implicit Neural Representation for Unsupervised High-Dimensional Quantitative MRI Reconstruction
- Title(参考訳): 非教師付き高次元定量的MRI画像再構成のための低ランク拡張型インシシットニューラル表現法
- Authors: Haonan Zhang, Guoyan Lao, Yuyao Zhang, Hongjiang Wei,
- Abstract要約: 高速3次元MP-qMRI再構成のための,教師なし,二元的統合フレームワークであるLoREINを提案する。
LoREINは、それぞれ低ランク表現(LRR)と暗黙の神経表現(INR)を介して、低ランク前と連続性の両方を取り入れ、再構成の忠実性を高める。
本研究は、複雑な時間的・高次元画像再構成タスクにおいて、幅広い可能性を持つゼロショット学習パラダイムを導入する。
- 参考スコア(独自算出の注目度): 9.757306418140987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative magnetic resonance imaging (qMRI) provides tissue-specific parameters vital for clinical diagnosis. Although simultaneous multi-parametric qMRI (MP-qMRI) technologies enhance imaging efficiency, robustly reconstructing qMRI from highly undersampled, high-dimensional measurements remains a significant challenge. This difficulty arises primarily because current reconstruction methods that rely solely on a single prior or physics-informed model to solve the highly ill-posed inverse problem, which often leads to suboptimal results. To overcome this limitation, we propose LoREIN, a novel unsupervised and dual-prior-integrated framework for accelerated 3D MP-qMRI reconstruction. Technically, LoREIN incorporates both low-rank prior and continuity prior via low-rank representation (LRR) and implicit neural representation (INR), respectively, to enhance reconstruction fidelity. The powerful continuous representation of INR enables the estimation of optimal spatial bases within the low-rank subspace, facilitating high-fidelity reconstruction of weighted images. Simultaneously, the predicted multi-contrast weighted images provide essential structural and quantitative guidance, further enhancing the reconstruction accuracy of quantitative parameter maps. Furthermore, our work introduces a zero-shot learning paradigm with broad potential in complex spatiotemporal and high-dimensional image reconstruction tasks, further advancing the field of medical imaging.
- Abstract(参考訳): 定量的磁気共鳴イメージング(qMRI)は、臨床診断に欠かせない組織特異的パラメータを提供する。
同時マルチパラメトリックqMRI(MP-qMRI)技術は画像効率を向上するが、高アンサンプのqMRIを頑健に再構成することは大きな課題である。
この難しさは、主に、1つの事前または物理インフォームドモデルにのみ依存する現在の再構成手法が、しばしば準最適結果をもたらす高度に不適切な逆問題を解決するために生じるためである。
この制限を克服するために,3次元MP-qMRI再構成を高速化する,教師なしかつ二元的統合フレームワークであるLoREINを提案する。
技術的には、LoREINは、それぞれ低ランク表現(LRR)と暗黙の神経表現(INR)を介して、低ランク前と連続性の両方を組み込んで、再構成の忠実性を高める。
INRの強力な連続表現により、低ランク部分空間内の最適空間基底の推定が可能となり、重み付き画像の高忠実度再構成が容易となる。
同時に、予測されたマルチコントラスト重み付き画像は、重要な構造的および定量的ガイダンスを提供し、定量的パラメータマップの再構成精度をさらに高めている。
さらに, 複雑な時空間・高次元画像再構成タスクにおいて, 広範の可能性を持つゼロショット学習パラダイムを導入し, 医用画像の分野をさらに進展させた。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [4.499605583818247]
拡散モデルを用いてMRI再構成を解こうとする研究もあるが、これらの手法はピクセル空間で直接動作する。
リッチな視覚的背景を持つ自然画像に事前学習した潜時拡散モデルでは,MRI再構成における高い計算コストの問題を解くことが期待されている。
LDPM法(Latent Diffusion Prior-based Undersampled MRI reconstruction)を提案する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
本研究では,ネイティブデータ領域に条件付き拡散モデルに基づく画像再構成手法を提案する。
提案手法は,特に加速係数の高い画像の再構成において,有意義な可能性を証明している。
論文 参考訳(メタデータ) (2023-09-02T01:33:50Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
高品質mri再構成を実現するための新しい注意に基づく深層学習フレームワークを提案する。
我々は,gan(generative adversarial network)フレームワークに大規模文脈的特徴統合と注意選択を組み込んだ。
論文 参考訳(メタデータ) (2021-03-13T09:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。