論文の概要: Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction
- arxiv url: http://arxiv.org/abs/2309.00783v1
- Date: Sat, 2 Sep 2023 01:33:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 01:17:07.767381
- Title: Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction
- Title(参考訳): 加速MRIとqMRI再構成のための領域条件付き事前誘導を用いた拡散モデリング
- Authors: Wanyu Bian, Albert Jang, and Fang Liu
- Abstract要約: 本研究では,ネイティブデータ領域に条件付き拡散モデルに基づく画像再構成手法を提案する。
提案手法は,特に加速係数の高い画像の再構成において,有意義な可能性を証明している。
- 参考スコア(独自算出の注目度): 3.083408283778178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel approach for image reconstruction based on a
diffusion model conditioned on the native data domain. Our method is applied to
multi-coil MRI and quantitative MRI reconstruction, leveraging the
domain-conditioned diffusion model within the frequency and parameter domains.
The prior MRI physics are used as embeddings in the diffusion model, enforcing
data consistency to guide the training and sampling process, characterizing MRI
k-space encoding in MRI reconstruction, and leveraging MR signal modeling for
qMRI reconstruction. Furthermore, a gradient descent optimization is
incorporated into the diffusion steps, enhancing feature learning and improving
denoising. The proposed method demonstrates a significant promise, particularly
for reconstructing images at high acceleration factors. Notably, it maintains
great reconstruction accuracy and efficiency for static and quantitative MRI
reconstruction across diverse anatomical structures. Beyond its immediate
applications, this method provides potential generalization capability, making
it adaptable to inverse problems across various domains.
- Abstract(参考訳): 本研究では,ネイティブデータ領域を条件とした拡散モデルに基づく新しい画像再構成手法を提案する。
本手法は,周波数領域とパラメータ領域における領域条件拡散モデルを利用して,マルチコイルMRIと定量的MRI再構成に適用する。
従来のMRI物理は拡散モデルへの埋め込み、トレーニングおよびサンプリングプロセスのガイドのためのデータの一貫性の強制、MRI再構成におけるMRIk空間符号化の特徴、およびqMRI再構成のためのMR信号モデリングの活用として使用される。
さらに、拡散ステップに勾配降下最適化を組み込み、特徴学習を強化し、騒音改善を行う。
提案手法は,特に高加速度度画像の再構成に有意な期待を示す。
特に、様々な解剖学的構造にまたがる静的かつ定量的なMRI再構成において、大幅な再構成精度と効率を維持する。
直近の応用以外にも、この手法は潜在的な一般化能力を提供し、様々な領域にわたる逆問題に適応できる。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
ガウス雑音を伴わずにk空間における画像劣化と復元を行うk空間冷拡散モデルを提案する。
以上の結果から, この新たな劣化処理により, 高速MRIのための高品質な再構成画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T19:34:18Z) - Correlated and Multi-frequency Diffusion Modeling for Highly
Under-sampled MRI Reconstruction [14.687337090732036]
既存のMRI再建法の多くは、特定の組織領域を考慮せずに、全MR画像のtar-geted再構成を行う。
これは、診断のための重要でない組織に対する再構成精度を強調できない可能性がある。
そこで本研究では,k空間データの特性と拡散過程を組み合わせることで,マルチ周波数先行のマイニングに焦点をあてる。
論文 参考訳(メタデータ) (2023-09-02T07:51:27Z) - Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
この論文は、高度な非滑らかな変動モデル(Magnetic Resonance Image)MRI再構成、効率的な学習可能な画像再構成アルゴリズム、およびMRI再構成と合成のためのディープラーニング方法を提供することを目的としている。
第1部では、変動モデルのための近位勾配降下にインスパイアされたアーキテクチャを備えた、新規なディープニューラルネットワークを紹介している。
第2部は、離散時間最適フレームワークにおけるキャリブレーションフリー高速pMRI再構成問題を解くことにより、第1部における予備作業の実質的な拡張である。
第3部は、メタラーニングフレームワークにおいて、一般化可能な磁気共鳴イメージング(MRI)再構成法を開発することを目的としている。
論文 参考訳(メタデータ) (2023-03-02T18:59:44Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。