Low-Rank Augmented Implicit Neural Representation for Unsupervised High-Dimensional Quantitative MRI Reconstruction
- URL: http://arxiv.org/abs/2506.09100v1
- Date: Tue, 10 Jun 2025 15:02:09 GMT
- Title: Low-Rank Augmented Implicit Neural Representation for Unsupervised High-Dimensional Quantitative MRI Reconstruction
- Authors: Haonan Zhang, Guoyan Lao, Yuyao Zhang, Hongjiang Wei,
- Abstract summary: We propose LoREIN, a novel unsupervised and dual-prior-integrated framework for accelerated 3D MP-qMRI reconstruction.<n>LoREIN incorporates both low-rank prior and continuity prior via low-rank representation (LRR) and implicit neural representation (INR), respectively, to enhance reconstruction fidelity.<n>Our work introduces a zero-shot learning paradigm with broad potential in complextemporal and high-dimensional image reconstruction tasks.
- Score: 9.757306418140987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative magnetic resonance imaging (qMRI) provides tissue-specific parameters vital for clinical diagnosis. Although simultaneous multi-parametric qMRI (MP-qMRI) technologies enhance imaging efficiency, robustly reconstructing qMRI from highly undersampled, high-dimensional measurements remains a significant challenge. This difficulty arises primarily because current reconstruction methods that rely solely on a single prior or physics-informed model to solve the highly ill-posed inverse problem, which often leads to suboptimal results. To overcome this limitation, we propose LoREIN, a novel unsupervised and dual-prior-integrated framework for accelerated 3D MP-qMRI reconstruction. Technically, LoREIN incorporates both low-rank prior and continuity prior via low-rank representation (LRR) and implicit neural representation (INR), respectively, to enhance reconstruction fidelity. The powerful continuous representation of INR enables the estimation of optimal spatial bases within the low-rank subspace, facilitating high-fidelity reconstruction of weighted images. Simultaneously, the predicted multi-contrast weighted images provide essential structural and quantitative guidance, further enhancing the reconstruction accuracy of quantitative parameter maps. Furthermore, our work introduces a zero-shot learning paradigm with broad potential in complex spatiotemporal and high-dimensional image reconstruction tasks, further advancing the field of medical imaging.
Related papers
- Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging [35.175191487977386]
We propose a novel deep-learning-based MRI reconstruction framework.<n>We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors.<n>Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms.
arXiv Detail & Related papers (2025-07-28T21:39:36Z) - LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [4.499605583818247]
Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space.<n>Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction.<n>A novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
We propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction.
We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2021-03-13T09:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.