論文の概要: Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
- arxiv url: http://arxiv.org/abs/2506.09331v1
- Date: Wed, 11 Jun 2025 02:12:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.189106
- Title: Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
- Title(参考訳): マルチエージェント言語モデル:協調、調整、適応の促進
- Authors: Arjun Vaithilingam Sudhakar,
- Abstract要約: 協調型マルチエージェント強化学習(MARL)のレンズを用いた大規模言語モデル(LLM)における心の理論について検討する。
提案手法は, 人工エージェントと人的エージェントの双方に適応し, 協力する能力を高めることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Large Language Models (LLMs) exhibit impressive zero-shot and few-shot generalization capabilities across complex natural language tasks, enabling their widespread use as virtual assistants for diverse applications such as translation and summarization. Despite being trained solely on large corpora of text without explicit supervision on author intent, LLMs appear to infer the underlying meaning of textual interactions. This raises a fundamental question: can LLMs model and reason about the intentions of others, i.e., do they possess a form of theory of mind? Understanding other's intentions is crucial for effective collaboration, which underpins human societal success and is essential for cooperative interactions among multiple agents, including humans and autonomous systems. In this work, we investigate the theory of mind in LLMs through the lens of cooperative multi-agent reinforcement learning (MARL), where agents learn to collaborate via repeated interactions, mirroring human social reasoning. Our approach aims to enhance artificial agent's ability to adapt and cooperate with both artificial and human partners. By leveraging LLM-based agents capable of natural language interaction, we move towards creating hybrid human-AI systems that can foster seamless collaboration, with broad implications for the future of human-artificial interaction.
- Abstract(参考訳): 現代の大規模言語モデル(LLM)は、複雑な自然言語タスクにまたがる印象的なゼロショットと少数ショットの一般化機能を示しており、翻訳や要約といった多様なアプリケーションのための仮想アシスタントとして広く利用されている。
LLMは、著者の意図を明示的に監督することなく、大きなテキストコーパスのみに訓練されているにもかかわらず、テキストインタラクションの根底にある意味を推測しているように見える。
LLMは、他者の意図をモデル化し、理由づけることができるか、つまり、それらは心の理論の形式を持っているか?
他者の意図を理解することは、人間の社会的成功を支える効果的な協調に不可欠であり、人間や自律システムを含む複数のエージェント間の協調的相互作用に不可欠である。
本研究では,協調型マルチエージェント強化学習(MARL)のレンズを用いて,LLMにおける心の理論を考察する。
提案手法は, 人工エージェントと人的エージェントの双方に適応し, 協力する能力を高めることを目的としている。
自然言語インタラクションが可能なLLMベースのエージェントを活用することで,シームレスなコラボレーションを促進できるハイブリッドな人間-AIシステムの構築を目指す。
関連論文リスト
- Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
大規模言語モデル(LLM)は、自然言語コマンドを解釈するために、その膨大な理解を活用できなければならない。
しかし、これらのモデルは幻覚に悩まされ、安全上の問題やタスクからの逸脱を引き起こす可能性がある。
本研究では、一つの独立したAIエージェントに対して複数のコラボレーティブAIシステムがテストされ、他のドメインの成功が人間とロボットのインタラクション性能の改善につながるかどうかを判定した。
論文 参考訳(メタデータ) (2024-11-23T02:47:12Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
大規模言語モデル(LLM)は,マルチエージェントシステムの開発を容易にする能力の実証がますます進んでいる。
本稿では,エージェントとワールドインタラクションをひとつのシミュレーションに統合し,複数のエージェントが協調して問題解決を行う方法を提案する。
我々は,2人のルームメイトとエージェントが協調してプログラミング作業を行う物理スタジオアパートの2つのシミュレーションを実装した。
論文 参考訳(メタデータ) (2024-09-14T21:53:35Z) - Your Co-Workers Matter: Evaluating Collaborative Capabilities of Language Models in Blocks World [13.005764902339523]
2つのエージェントがそれぞれ独自の目標とスキルを持ち、ターゲット構造を一緒に構築するブロックワールド環境を設計する。
目標を達成するために、彼らは世界で行動し、自然言語でコミュニケーションすることができる。
パートナーの状態をモデル化し、実行エラーを特定し、修正するための中間的推論ステップを含む、チェーンオブ思想のプロンプトを採用しています。
論文 参考訳(メタデータ) (2024-03-30T04:48:38Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。