Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
- URL: http://arxiv.org/abs/2506.09331v1
- Date: Wed, 11 Jun 2025 02:12:34 GMT
- Title: Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
- Authors: Arjun Vaithilingam Sudhakar,
- Abstract summary: We investigate the theory of mind in Large Language Models (LLMs) through the lens of cooperative multi-agent reinforcement learning (MARL)<n>Our approach aims to enhance artificial agent's ability to adapt and cooperate with both artificial and human partners.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Large Language Models (LLMs) exhibit impressive zero-shot and few-shot generalization capabilities across complex natural language tasks, enabling their widespread use as virtual assistants for diverse applications such as translation and summarization. Despite being trained solely on large corpora of text without explicit supervision on author intent, LLMs appear to infer the underlying meaning of textual interactions. This raises a fundamental question: can LLMs model and reason about the intentions of others, i.e., do they possess a form of theory of mind? Understanding other's intentions is crucial for effective collaboration, which underpins human societal success and is essential for cooperative interactions among multiple agents, including humans and autonomous systems. In this work, we investigate the theory of mind in LLMs through the lens of cooperative multi-agent reinforcement learning (MARL), where agents learn to collaborate via repeated interactions, mirroring human social reasoning. Our approach aims to enhance artificial agent's ability to adapt and cooperate with both artificial and human partners. By leveraging LLM-based agents capable of natural language interaction, we move towards creating hybrid human-AI systems that can foster seamless collaboration, with broad implications for the future of human-artificial interaction.
Related papers
- Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
Large language models (LLMs) should be able to leverage their large breadth of understanding to interpret natural language commands.
However, these models suffer from hallucinations, which may cause safety issues or deviations from the task.
In this research, multiple collaborative AI systems were tested against a single independent AI agent to determine whether the success in other domains would translate into improved human-robot interaction performance.
arXiv Detail & Related papers (2024-11-23T02:47:12Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems.
This paper aims to integrate agents & world interaction into a single simulation where multiple agents can work together to solve a problem.
We implement two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task.
arXiv Detail & Related papers (2024-09-14T21:53:35Z) - Your Co-Workers Matter: Evaluating Collaborative Capabilities of Language Models in Blocks World [13.005764902339523]
We design a blocks-world environment where two agents, each having unique goals and skills, build a target structure together.
To complete the goals, they can act in the world and communicate in natural language.
We adopt chain-of-thought prompts that include intermediate reasoning steps to model the partner's state and identify and correct execution errors.
arXiv Detail & Related papers (2024-03-30T04:48:38Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - SpeechAgents: Human-Communication Simulation with Multi-Modal
Multi-Agent Systems [53.94772445896213]
Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society.
We propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication.
arXiv Detail & Related papers (2024-01-08T15:01:08Z) - LLM-Powered Hierarchical Language Agent for Real-time Human-AI
Coordination [28.22553394518179]
We propose a Hierarchical Language Agent (HLA) for human-AI coordination.
HLA provides both strong reasoning abilities while keeping real-time execution.
Human studies show that HLA outperforms other baseline agents, including slow-mind-only agents and fast-mind-only agents.
arXiv Detail & Related papers (2023-12-23T11:09:48Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents.
We propose a novel communicative agent framework named role-playing.
Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems.
arXiv Detail & Related papers (2023-03-31T01:09:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.