Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
- URL: http://arxiv.org/abs/2506.09399v3
- Date: Tue, 24 Jun 2025 12:16:38 GMT
- Title: Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
- Authors: Kaiyu Guo, Zijian Wang, Tan Pan, Brian C. Lovell, Mahsa Baktashmotlagh,
- Abstract summary: Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems.<n>We argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry.<n>Our approach significantly enhances OOD detection across various models.
- Score: 12.001290283557466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
Related papers
- Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning [9.132399905884364]
Unsupervised anomaly detection assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability.<n>We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist.
arXiv Detail & Related papers (2025-08-04T11:03:12Z) - Zero-Shot Image Anomaly Detection Using Generative Foundation Models [2.241618130319058]
This research explores the use of score-based generative models as foundational tools for semantic anomaly detection.<n>By analyzing Stein score errors, we introduce a novel method for identifying anomalous samples without requiring re-training on each target dataset.<n>Our approach improves over state-of-the-art and relies on training a single model on one dataset -- CelebA -- which we find to be an effective base distribution.
arXiv Detail & Related papers (2025-07-30T13:56:36Z) - RealTraj: Towards Real-World Pedestrian Trajectory Forecasting [10.332817296500533]
We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting.<n>We present Det2TrajFormer, a model that remains invariant to tracking noise by using past detections as inputs.<n>Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, reducing the need for costly person ID annotations.
arXiv Detail & Related papers (2024-11-26T12:35:26Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Approximations to the Fisher Information Metric of Deep Generative Models for Out-Of-Distribution Detection [2.3749120526936465]
We show that deep generative models consistently infer higher log-likelihoods for OOD data than data they were trained on.
We use the gradient of a data point with respect to the parameters of the deep generative model for OOD detection, based on the simple intuition that OOD data should have larger gradient norms than training data.
Our empirical results indicate that this method outperforms the Typicality test for most deep generative models and image dataset pairings.
arXiv Detail & Related papers (2024-03-03T11:36:35Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
Collaborative inference enables resource-constrained edge devices to make inferences by uploading inputs to a server.
While this setup works cost-effectively for successful inferences, it severely underperforms when the model faces input samples on which the model was not trained.
We propose a novel lightweight OOD detection approach that mines important features from the shallow layers of a pretrained CNN model.
arXiv Detail & Related papers (2021-06-25T18:43:23Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.