Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning
- URL: http://arxiv.org/abs/2508.02293v1
- Date: Mon, 04 Aug 2025 11:03:12 GMT
- Title: Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning
- Authors: Muhammad Aqeel, Shakiba Sharifi, Marco Cristani, Francesco Setti,
- Abstract summary: Unsupervised anomaly detection assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability.<n>We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist.
- Score: 9.132399905884364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: So-called unsupervised anomaly detection is better described as semi-supervised, as it assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability. We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist, eliminating the need for explicit filtering. Our approach integrates Soft Confident Learning, which assigns lower weights to low-confidence samples, and Meta-Learning, which stabilizes training by regularizing updates based on training validation loss covariance. This prevents overfitting and enhances robustness to noisy data. CoMet is model-agnostic and can be applied to any anomaly detection method trainable via gradient descent. Experiments on MVTec-AD, VIADUCT, and KSDD2 with two state-of-the-art models demonstrate the effectiveness of our approach, consistently improving over the baseline methods, remaining insensitive to anomalies in the training set, and setting a new state-of-the-art across all datasets.
Related papers
- Improving Out-of-Distribution Detection via Dynamic Covariance Calibration [12.001290283557466]
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems.<n>We argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry.<n>Our approach significantly enhances OOD detection across various models.
arXiv Detail & Related papers (2025-06-11T05:05:26Z) - Strengthening Anomaly Awareness [0.0]
We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection.<n>Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy.
arXiv Detail & Related papers (2025-04-15T16:52:22Z) - Deep evolving semi-supervised anomaly detection [14.027613461156864]
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD)<n>The paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection.
arXiv Detail & Related papers (2024-12-01T15:48:37Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.