論文の概要: Revisit What You See: Disclose Language Prior in Vision Tokens for LVLM Decoding
- arxiv url: http://arxiv.org/abs/2506.09522v2
- Date: Sat, 11 Oct 2025 19:17:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 15:48:08.773428
- Title: Revisit What You See: Disclose Language Prior in Vision Tokens for LVLM Decoding
- Title(参考訳): 振り返る:LVLMデコーディングのためのビジョントークンに先立って言語を開示する
- Authors: Beomsik Cho, Jaehyung Kim,
- Abstract要約: LVLM(Large Vision-Language Models)は、視覚認識と言語理解を統合することで、マルチモーダルタスクにおける強力なパフォーマンスを実現する。
テキスト生成のガイドとして視覚トークンを参照するトレーニング不要な復号法であるReVisiTを提案する。
- 参考スコア(独自算出の注目度): 6.612630497074871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) achieve strong performance across multimodal tasks by integrating visual perception with language understanding. However, how vision information contributes to the model's decoding process remains under-explored, as reflected in frequent hallucinations. Through a series of analyses, we found that (i) vision tokens provide meaningful visual information even when hallucinations occur, and (ii) their semantics are encoded in the textual space and become explicit under appropriate vocabulary constraints. Building on these observations, we propose ReVisiT, a simple training-free decoding method that references vision tokens to guide text generation. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution. Specifically, ReVisiT dynamically selects the most relevant vision token at each decoding step via context-aware constrained divergence minimization, and using its constrained projection to refine the output distribution to better incorporate visual semantics. Across five benchmarks on recent LVLMs, ReVisiT consistently enhances visual grounding with minimal computational overhead, and achieves competitive or superior results to state-of-the-art decoding baselines while reducing computational cost by up to $2\times$.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、視覚認識と言語理解を統合することで、マルチモーダルタスクにおける強力なパフォーマンスを実現する。
しかし、視覚情報がモデルの復号過程にどのように貢献するかは、しばしば幻覚に反映されるように、まだ未解明のままである。
一連の分析によって、私たちは
一 幻覚が発生しても有意義な視覚情報を提供する視覚トークン
(i)それらの意味論はテキスト空間に符号化され、適切な語彙制約の下で明示される。
これらの観測結果に基づいて,視覚トークンを参照してテキスト生成をガイドする,簡単なトレーニング不要な復号法であるReVisiTを提案する。
本手法では,テキストトークン分布に投影することで,視覚トークン内に埋め込まれた意味情報を活用する。
具体的には、ReVisiTは、コンテキスト認識制約分散最小化により、各デコーディングステップにおいて最も関連性の高い視覚トークンを動的に選択し、その制約されたプロジェクションを使用して、出力分布を洗練し、視覚的意味論をよりうまく組み込む。
最近のLVLMの5つのベンチマークで、ReVisiTは最小の計算オーバーヘッドで視覚的グラウンド化を継続的に強化し、最先端のデコードベースラインに対する競合的あるいは優れた結果を達成すると同時に、計算コストを最大2\times$まで削減している。
関連論文リスト
- ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models [67.75439511654078]
LVLM(Large Vision-Language Models)は、テキスト応答による画像入力の理解と推論のための新しいパラダイムを導入している。
彼らは幻覚という永続的な課題に直面しており、現実のアプリケーションに信頼性のあるデプロイを行うことについて懸念を抱き、実践的な弱点をもたらしている。
OnLYは,1つのクエリと1層の介入しか必要とせず,効率的なリアルタイムデプロイメントを実現するためのトレーニング不要なデコーディング手法である。
論文 参考訳(メタデータ) (2025-07-01T16:01:08Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
視覚言語モデル(LVLM)は、視覚入力をパッチレベルのトークンの密度の高いシーケンスとしてエンコードし、微細なセマンティクスをキャプチャする。
これまでは、大型言語モデル(LLM)の前か中のいずれかで、視覚トークンの削減を検討してきた。
トレーニングフリーで視覚のみのプルーニングフレームワークであるVisionDropを導入し、モーダル内(視覚から視覚への)注目に基づいて情報的視覚トークンを選択する。
論文 参考訳(メタデータ) (2025-06-27T14:55:40Z) - Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference [28.24397677839652]
マルチモーダル大規模言語モデル(MLLM)は、事前訓練された視覚エンコーダの視覚的特徴を大規模言語モデルに統合することにより、視覚言語タスクの性能を向上させる。
MLLMがどのように処理し、どのように視覚情報を利用するかは、まだ不明である。
階層型モダリティ・アウェア・プルーニング(HiMAP, Hierarchical Modality-Aware Pruning)を提案する。
論文 参考訳(メタデータ) (2025-03-17T12:31:23Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
大規模視覚言語モデル(LVLM)は様々な視覚言語タスクにおいて印象的な成果を上げている。
LVLMは言語バイアスによる幻覚に悩まされ、画像や非効果的な視覚的理解に焦点が当てられなくなった。
MDA (Multimodal duAl-attention meChanIsm) aNd soft-image Guidance (IFG) を用いたLVLMの言語バイアスに対処するためのLACingを提案する。
論文 参考訳(メタデータ) (2024-11-21T16:33:30Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-21T14:22:38Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。