Dynamic structure factor of a driven-dissipative Bose-Hubbard model
- URL: http://arxiv.org/abs/2506.09615v1
- Date: Wed, 11 Jun 2025 11:17:41 GMT
- Title: Dynamic structure factor of a driven-dissipative Bose-Hubbard model
- Authors: Subhanka Mal, Anushree Dey, Kingshuk Adikary, Bimalendu Deb,
- Abstract summary: Dynamic structure factor (DSF) is important for understanding excitations in many-body physics.<n>We calculate the DSF of a nonequilibrium spinless Bose-Hubbard model (BHM) from the perspective of dissipative phase transition (DPT) in a steady state.<n>Our results show that the DSF near a DPT point is characteristically different from that away from the transition point, providing a clear density spectral signature of the DPT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic structure factor (DSF) is important for understanding excitations in many-body physics; it reveals information about the spectral and spatial correlations of fluctuations in quantum systems. Collective phenomena like quantum phase transitions of ultracold atoms are addressed by harnessing density fluctuations. Here, we calculate the DSF of a nonequilibrium spinless Bose-Hubbard model (BHM) from the perspective of dissipative phase transition (DPT) in a steady state. Our methodology uses a homogeneous mean-field approximation to make the single-site hierarchy simpler and applies the Lindbladian perturbation method (LPM) to go beyond the single site, limited by the ratio of the inter-site hopping term to the Liouvillian gap as a small parameter. Our results show that the DSF near a DPT point is characteristically different from that away from the transition point, providing a clear density spectral signature of the DPT. In addition to comparing the two numerical frameworks, the mean-field results serve as a benchmark for proof-of-principle robustness of LPM. Despite the numerical difficulty, our methodology provides a computationally accessible route for studying density fluctuations in an open lattice quantum system without requiring large-scale computation.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.<n>We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.<n>We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Spectral truncation of out-of-time-ordered correlators in dissipative system [44.99833362998488]
Out-of-time-ordered correlators (OTOCs) have emerged as powerful tools for diagnosing quantum chaos and information scrambling.<n>We investigate the spectral decomposition of OTOCs in open quantum systems using the dissipative modified kicked rotator (DMKR) as a paradigmatic model.<n>Our results provide a quantitative framework for understanding OTOCs in dissipative quantum systems and suggest new avenues for experimental exploration in open quantum platforms.
arXiv Detail & Related papers (2025-03-05T17:22:25Z) - Many-body spectral transitions through the lens of variable-range SYK2 model [13.39567116041819]
We investigate a quadratic SYK model with distance-dependent interactions governed by a power-law decay.<n>By analytically and numerically studying the spectral form factor (SFF), we uncover how the single particle transitions manifest in the many-body system.<n>Our results highlight the interplay between single-particle criticality and many-body dynamics, offering new insights into the quantum chaos-to-localization transition and its reflection in spectral statistics.
arXiv Detail & Related papers (2024-12-18T19:17:20Z) - Cahier de l'Institut Pascal: Noisy Quantum Dynamics and Measurement-Induced Phase Transitions [44.99833362998488]
We provide an analysis of recent results in the context of measurement-induced phase transitions in quantum systems.
Recent results show how varying the rate of projective measurements can induce phase transitions.
We present results on the non-local effects of local measurements by examining the field theory of critical ground states in Tomonaga-Luttinger liquids.
arXiv Detail & Related papers (2024-09-10T08:10:25Z) - Exploiting many-body localization for scalable variational quantum simulation [0.0]
Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices.
Despite their potential, the scalability of these algorithms poses a significant challenge.
We explore the many-body localization (MBL)-thermalization phase transitions within a framework of Floquet-kickd variational quantum circuits.
arXiv Detail & Related papers (2024-04-26T17:40:20Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Fidelity Strange Correlators for Average Symmetry-Protected Topological Phases [5.958323632083269]
Average Symmetry-Protected Topological phases extend to quantum systems affected by disorder or decoherence.<n>We introduce a strange correlator (FSC) which operates directly on a single bulk density matrix without boundaries.<n>Our work lays the groundwork for identifying these intriguing topological phases of matter in open quantum systems.
arXiv Detail & Related papers (2022-10-31T17:12:02Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.