Many-body spectral transitions through the lens of variable-range SYK2 model
- URL: http://arxiv.org/abs/2412.14280v1
- Date: Wed, 18 Dec 2024 19:17:20 GMT
- Title: Many-body spectral transitions through the lens of variable-range SYK2 model
- Authors: Andrea Legramandi, Soumik Bandyopadhyay, Philipp Hauke,
- Abstract summary: We investigate a quadratic SYK model with distance-dependent interactions governed by a power-law decay.
By analytically and numerically studying the spectral form factor (SFF), we uncover how the single particle transitions manifest in the many-body system.
Our results highlight the interplay between single-particle criticality and many-body dynamics, offering new insights into the quantum chaos-to-localization transition and its reflection in spectral statistics.
- Score: 13.39567116041819
- License:
- Abstract: The Sachdev-Ye-Kitaev (SYK) model is a cornerstone in the study of quantum chaos and holographic quantum matter. Real-world implementations, however, deviate from the idealized all-to-all connectivity, raising questions about the robustness of its chaotic properties. In this work, we investigate a quadratic SYK model with distance-dependent interactions governed by a power-law decay. By analytically and numerically studying the spectral form factor (SFF), we uncover how the single particle transitions manifest in the many-body system. While the SFF demonstrates robustness under slightly reduced interaction ranges, further suppression leads to a breakdown of perturbation theory and new spectral regimes, marked by a higher dip and the emergence of a secondary plateau. Our results highlight the interplay between single-particle criticality and many-body dynamics, offering new insights into the quantum chaos-to-localization transition and its reflection in spectral statistics.
Related papers
- The Smearing of Quasi-Particles: Signatures in the Entanglement Entropy of Excited Many-Particle Systems [0.0]
entanglement spectrum serves as a powerful tool for probing the structure and dynamics of quantum many-body systems.
In this paper, we investigate the crossover between these two regimes, focusing on the role of quasi-particles (QPs) in mediating this transition.
We find that a hallmark of QPs is a linear dependence of the eigenstate EE on energy, which breaks down at high energy and in the limit of strong interaction.
arXiv Detail & Related papers (2024-12-30T09:07:14Z) - Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons [0.0]
We study the dynamics of a $nu=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients.
We find that the topological signatures of the FQH state remain robust against the non-local modulated cavity vacuum fluctuations.
By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton.
arXiv Detail & Related papers (2024-05-20T18:00:36Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
arXiv Detail & Related papers (2023-02-20T12:49:59Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.