論文の概要: Assessing the Quality of Denoising Diffusion Models in Wasserstein Distance: Noisy Score and Optimal Bounds
- arxiv url: http://arxiv.org/abs/2506.09681v1
- Date: Wed, 11 Jun 2025 12:55:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.970316
- Title: Assessing the Quality of Denoising Diffusion Models in Wasserstein Distance: Noisy Score and Optimal Bounds
- Title(参考訳): ワッサーシュタイン距離における拡散モデルの品質評価:雑音スコアと最適境界
- Authors: Vahan Arsenyan, Elen Vardanyan, Arnak Dalalyan,
- Abstract要約: 拡散確率モデル(DDPM)は、推定スコア関数によって駆動される拡散過程を介してブラウン運動をマッピングすることでそのような例を構築する。
We establish finite-sample guarantees in Wasserstein-2 distance that exhibit two key features: (i) they characterizedize and Quantify the robustness of DDPMs to noisy score estimates, and (ii) they achieve faster convergence rate than previously known results。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling aims to produce new random examples from an unknown target distribution, given access to a finite collection of examples. Among the leading approaches, denoising diffusion probabilistic models (DDPMs) construct such examples by mapping a Brownian motion via a diffusion process driven by an estimated score function. In this work, we first provide empirical evidence that DDPMs are robust to constant-variance noise in the score evaluations. We then establish finite-sample guarantees in Wasserstein-2 distance that exhibit two key features: (i) they characterize and quantify the robustness of DDPMs to noisy score estimates, and (ii) they achieve faster convergence rates than previously known results. Furthermore, we observe that the obtained rates match those known in the Gaussian case, implying their optimality.
- Abstract(参考訳): 生成モデリングは、未知のターゲット分布から新しいランダムな例を生成することを目的としている。
主要なアプローチの中で、拡散確率モデル (DDPM) は、推定スコア関数によって駆動される拡散過程を通じてブラウン運動をマッピングすることにより、そのような例を構築する。
本研究は, DDPMが定分散雑音に対して頑健であることの実証的証拠をまず提示する。
次に、ワッサーシュタイン2距離において、2つの重要な特徴を示す有限サンプル保証を確立する。
一 雑音スコア推定に対するDDPMの頑健さを特徴づけ、定量化すること。
(ii) 既知結果よりも高速な収束率を達成する。
さらに,得られた値はガウスの場合と一致し,最適性が示唆された。
関連論文リスト
- Noise Conditional Variational Score Distillation [60.38982038894823]
騒音条件変化スコア蒸留(NCVSD)は, 予混合拡散モデルから生成消音剤を蒸留する新しい方法である。
この知見を変分スコア蒸留フレームワークに組み込むことで、生成的デノイザのスケーラブルな学習を可能にする。
論文 参考訳(メタデータ) (2025-06-11T06:01:39Z) - Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
拡散モデルは、様々な雑音レベルにおける対象分布のスコア関数を推定してサンプルを生成する。
本研究では,これらのスコア関数を学習するために,次元自由なサンプル境界の複雑性を初めて(ほぼ)確立する。
我々の分析の重要な側面は、ノイズレベル間でのスコアを共同で推定する単一関数近似器を使用することである。
論文 参考訳(メタデータ) (2025-02-14T18:32:22Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data [55.54827581105283]
本研究では, 吸収拡散の具体的なスコアを, クリーンデータの条件付き確率として表すことができることを示す。
時間に依存しない条件付き確率を特徴付ける時間条件のない専用拡散モデルを提案する。
5つのゼロショット言語モデルベンチマークにおける拡散モデル間のSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T04:22:11Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPM) は、様々な世代タスクにおいて優れたパフォーマンスを実現している。
実際には、DDPMは高品質なサンプルを得るために何十万ものデノナイジングステップを必要とすることが多い。
本稿では,DDPMの早期停止型DDPM(Early-Stopped DDPM, ES-DDPM)の原理的高速化戦略を提案する。
論文 参考訳(メタデータ) (2022-05-25T06:40:09Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。