Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring
- URL: http://arxiv.org/abs/2506.09742v1
- Date: Wed, 11 Jun 2025 13:48:25 GMT
- Title: Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring
- Authors: Gusseppe Bravo-Rocca, Peini Liu, Jordi Guitart, Rodrigo M Carrillo-Larco, Ajay Dholakia, David Ellison,
- Abstract summary: We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models.<n>Decision Procedure module simulates feature engineering through three key steps: Refactor, Break Down, and Compile.<n> Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines.
- Score: 2.1205272468688574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring Machine Learning (ML) models in production environments is crucial, yet traditional approaches often yield verbose, low-interpretability outputs that hinder effective decision-making. We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models (LLMs), significantly enhancing the interpretability of monitoring outputs. Central to our approach is a Decision Procedure module that simulates feature engineering through three key steps: Refactor, Break Down, and Compile. The Refactor step improves data representation to better capture feature semantics, allowing the LLM to focus on salient aspects of the monitoring data while reducing noise and irrelevant information. Break Down decomposes complex information for detailed analysis, and Compile integrates sub-insights into clear, interpretable outputs. This process leads to a more deterministic planning approach, reducing dependence on LLM-generated planning, which can sometimes be inconsistent and overly general. The combination of feature engineering-driven planning and selective LLM utilization results in a robust decision support system, capable of providing highly interpretable and actionable insights. Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines across several domains.
Related papers
- Complex LLM Planning via Automated Heuristics Discovery [48.07520536415374]
We consider enhancing large language models (LLMs) for complex planning tasks.<n>We propose automated inferences discovery (AutoHD), a novel approach that enables LLMs to explicitly generate functions to guide-time search.<n>Our proposed method requires no additional model training or finetuning--and the explicit definition of functions generated by the LLMs provides interpretability and insights into the reasoning process.
arXiv Detail & Related papers (2025-02-26T16:52:31Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts [40.98057887166546]
Large language model (LLM) agents have emerged as a promising solution to automate the workflow of machine learning.<n>We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models.<n>By systematically updating individual components based on real training feedback, Iterative Refinement improves overall model performance.
arXiv Detail & Related papers (2025-02-25T01:52:37Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - AgentPS: Agentic Process Supervision for Content Moderation with Multimodal LLMs [9.35901507816989]
We introduce AgentPS, a framework that integrates Agentic Process Supervision into large language models.<n>We show that AgentPS achieves substantial improvements over baseline MLLMs on public benchmarks and proprietary datasets.<n>These results establish AgentPS as a scalable and effective solution for complex multimodal classification in large-scale industrial applications.
arXiv Detail & Related papers (2024-12-15T04:58:00Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction [14.982446379660633]
Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning.
We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance.
This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning.
arXiv Detail & Related papers (2024-06-17T12:11:01Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
Large Language Models (LLMs) are pivotal in advancing natural language processing.
LLMs often struggle with complex reasoning tasks due to inefficient attention distributions.
We introduce a novel method for extending computed tokens in the Chain-of-Thought process, utilizing attention mechanism optimization.
arXiv Detail & Related papers (2024-03-22T03:23:58Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.