論文の概要: Load-Aware Training Scheduling for Model Circulation-based Decentralized Federated Learning
- arxiv url: http://arxiv.org/abs/2506.09769v1
- Date: Wed, 11 Jun 2025 14:09:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:03.036479
- Title: Load-Aware Training Scheduling for Model Circulation-based Decentralized Federated Learning
- Title(参考訳): モデル循環型分散型フェデレーションラーニングのための負荷対応トレーニングスケジューリング
- Authors: Haruki Kainuma, Takayuki Nishio,
- Abstract要約: 本稿では,Tram-FLの拡張であるLoad-Aware Tram-FLを提案する。
計算処理と通信コストの両方を含む全体的なトレーニング遅延は、目的関数によって最小化される。
MNIST と CIFAR-10 のシミュレーション結果から,負荷対応の Tram-FL はトレーニング時間を著しく短縮し,収束を加速することが示された。
- 参考スコア(独自算出の注目度): 2.847466645223566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes Load-aware Tram-FL, an extension of Tram-FL that introduces a training scheduling mechanism to minimize total training time in decentralized federated learning by accounting for both computational and communication loads. The scheduling problem is formulated as a global optimization task, which-though intractable in its original form-is made solvable by decomposing it into node-wise subproblems. To promote balanced data utilization under non-IID distributions, a variance constraint is introduced, while the overall training latency, including both computation and communication costs, is minimized through the objective function. Simulation results on MNIST and CIFAR-10 demonstrate that Load-aware Tram-FL significantly reduces training time and accelerates convergence compared to baseline methods.
- Abstract(参考訳): 本稿では,Tram-FLの拡張であるLoad-Aware Tram-FLを提案する。このTram-FLは,分散化フェデレート学習において,計算負荷と通信負荷の両方を考慮したトレーニング時間を最小化するためのトレーニングスケジューリング機構を提供する。
スケジューリング問題はグローバル最適化タスクとして定式化され、元の形式では難解であるが、ノードワイズサブプロブレムに分解することで解ける。
非IID分布下でのバランスの取れたデータ利用を促進するために、分散制約を導入し、計算コストと通信コストの両方を含む全体的なトレーニング遅延を目標関数で最小化する。
MNIST と CIFAR-10 のシミュレーション結果から,負荷対応 Tram-FL はトレーニング時間を大幅に短縮し,ベースライン法に比べて収束を加速することが示された。
関連論文リスト
- Efficient Federated Split Learning for Large Language Models over Communication Networks [14.461758448289908]
分散方式で訓練済みの大規模言語モデル(LLM)を微調整することは、リソース制約のあるエッジデバイスに重大な課題をもたらす。
我々は,分割フェデレーション学習とパラメータ効率のよい微調整技術を統合する新しいフレームワークであるFedsLLMを提案する。
論文 参考訳(メタデータ) (2025-04-20T16:16:54Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL)は、新しく登場した分散機械学習(ML)フレームワークである。
本稿では,FLシステムにおけるトラグラー問題を排除するために,周期的なアグリゲーションを伴う非同期FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-23T18:57:08Z) - Joint Client Scheduling and Resource Allocation under Channel
Uncertainty in Federated Learning [47.97586668316476]
無線ネットワーク上のフェデレートラーニング(FL)は、クライアントサーバの接続性とクライアントのローカル計算能力の信頼性に依存する。
本稿では、FLを用いたモデルトレーニングの性能を高めるため、クライアントスケジューリングとリソースブロック(RB)割り当ての問題について検討する。
提案手法は,最先端クライアントスケジューリングやRBアロケーション手法と比較して,トレーニング精度損失のギャップを最大40.7%削減する。
論文 参考訳(メタデータ) (2021-06-12T15:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。