Do LLMs Give Psychometrically Plausible Responses in Educational Assessments?
- URL: http://arxiv.org/abs/2506.09796v1
- Date: Wed, 11 Jun 2025 14:41:10 GMT
- Title: Do LLMs Give Psychometrically Plausible Responses in Educational Assessments?
- Authors: Andreas Säuberli, Diego Frassinelli, Barbara Plank,
- Abstract summary: Knowing how test takers answer items in educational assessments is essential for test development.<n>If large language models (LLMs) exhibit human-like response behavior to test items, this could open up the possibility of using them as pilot participants to accelerate test development.
- Score: 24.31027563947265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowing how test takers answer items in educational assessments is essential for test development, to evaluate item quality, and to improve test validity. However, this process usually requires extensive pilot studies with human participants. If large language models (LLMs) exhibit human-like response behavior to test items, this could open up the possibility of using them as pilot participants to accelerate test development. In this paper, we evaluate the human-likeness or psychometric plausibility of responses from 18 instruction-tuned LLMs with two publicly available datasets of multiple-choice test items across three subjects: reading, U.S. history, and economics. Our methodology builds on two theoretical frameworks from psychometrics which are commonly used in educational assessment, classical test theory and item response theory. The results show that while larger models are excessively confident, their response distributions can be more human-like when calibrated with temperature scaling. In addition, we find that LLMs tend to correlate better with humans in reading comprehension items compared to other subjects. However, the correlations are not very strong overall, indicating that LLMs should not be used for piloting educational assessments in a zero-shot setting.
Related papers
- How Far Can LLMs Improve from Experience? Measuring Test-Time Learning Ability in LLMs with Human Comparison [18.55932151761813]
We advocate for the evaluation of Test-time Learning, the capacity to improve performance in experience-based, reasoning-intensive tasks during test time.<n>We introduce an objective evaluation framework that compares model performance under both limited and cumulative experience settings, and contains four forms of experience representation.<n>Results show that LLMs exhibit measurable test-time learning capabilities; however, their improvements are less stable under cumulative experience and progress more slowly than those observed in humans.
arXiv Detail & Related papers (2025-06-17T12:13:56Z) - TestAgent: An Adaptive and Intelligent Expert for Human Assessment [62.060118490577366]
We propose TestAgent, a large language model (LLM)-powered agent designed to enhance adaptive testing through interactive engagement.<n>TestAgent supports personalized question selection, captures test-takers' responses and anomalies, and provides precise outcomes through dynamic, conversational interactions.
arXiv Detail & Related papers (2025-06-03T16:07:54Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments.<n>We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data.<n>We evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations.
arXiv Detail & Related papers (2024-06-26T14:56:13Z) - ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models [53.00812898384698]
We argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking.
We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert.
We propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
arXiv Detail & Related papers (2024-05-28T22:45:28Z) - Limited Ability of LLMs to Simulate Human Psychological Behaviours: a Psychometric Analysis [0.27309692684728604]
We prompt OpenAI's flagship models, GPT-3.5 and GPT-4, to assume different personas and respond to a range of standardized measures of personality constructs.
We found that the responses from GPT-4, but not GPT-3.5, using generic persona descriptions show promising, albeit not perfect, psychometric properties.
arXiv Detail & Related papers (2024-05-12T10:52:15Z) - Challenging the Validity of Personality Tests for Large Language Models [2.9123921488295768]
Large language models (LLMs) behave increasingly human-like in text-based interactions.
LLMs' responses to personality tests systematically deviate from human responses.
arXiv Detail & Related papers (2023-11-09T11:54:01Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - Investigating Large Language Models' Perception of Emotion Using
Appraisal Theory [3.0902630634005797]
Large Language Models (LLM) have significantly advanced in recent years and are now being used by the general public.
In this work, we investigate their emotion perception through the lens of appraisal and coping theory.
We applied SCPQ to three recent LLMs from OpenAI, davinci-003, ChatGPT, and GPT-4 and compared the results with predictions from the appraisal theory and human data.
arXiv Detail & Related papers (2023-10-03T16:34:47Z) - Position: AI Evaluation Should Learn from How We Test Humans [65.36614996495983]
We argue that psychometrics, a theory originating in the 20th century for human assessment, could be a powerful solution to the challenges in today's AI evaluations.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
Large Language Models (LLMs) have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored.
This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests.
arXiv Detail & Related papers (2023-03-01T06:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.