How Far Can LLMs Improve from Experience? Measuring Test-Time Learning Ability in LLMs with Human Comparison
- URL: http://arxiv.org/abs/2506.14448v2
- Date: Wed, 06 Aug 2025 09:42:36 GMT
- Title: How Far Can LLMs Improve from Experience? Measuring Test-Time Learning Ability in LLMs with Human Comparison
- Authors: Jiayin Wang, Zhiquang Guo, Weizhi Ma, Min Zhang,
- Abstract summary: We advocate for the evaluation of Test-time Learning, the capacity to improve performance in experience-based, reasoning-intensive tasks during test time.<n>We introduce an objective evaluation framework that compares model performance under both limited and cumulative experience settings, and contains four forms of experience representation.<n>Results show that LLMs exhibit measurable test-time learning capabilities; however, their improvements are less stable under cumulative experience and progress more slowly than those observed in humans.
- Score: 18.55932151761813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As evaluation designs of large language models may shape our trajectory toward artificial general intelligence, comprehensive and forward-looking assessment is essential. Existing benchmarks primarily assess static knowledge, while intelligence also entails the ability to rapidly learn from experience. To this end, we advocate for the evaluation of Test-time Learning, the capacity to improve performance in experience-based, reasoning-intensive tasks during test time. In this work, we propose semantic games as effective testbeds for evaluating test-time learning, due to their resistance to saturation and inherent demand for strategic reasoning. We introduce an objective evaluation framework that compares model performance under both limited and cumulative experience settings, and contains four forms of experience representation. To provide a comparative baseline, we recruit eight human participants to complete the same task. Results show that LLMs exhibit measurable test-time learning capabilities; however, their improvements are less stable under cumulative experience and progress more slowly than those observed in humans. These findings underscore the potential of LLMs as general-purpose learning machines, while also revealing a substantial intellectual gap between models and humans, irrespective of how well LLMs perform on static benchmarks.
Related papers
- EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving [61.99289768925256]
EvaLearn is a benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks.<n>We benchmark nine frontier models and observe varied performance profiles.<n>We observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks.
arXiv Detail & Related papers (2025-06-03T09:18:33Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
This study explores the potential of Large Language Models (LLMs), specifically GPT-4, to enhance objectivity in organizational task performance evaluations.
Our results suggest that GPT ratings are comparable to human ratings but exhibit higher consistency and reliability.
Our research suggests that while LLMs are capable of extracting meaningful constructs from text-based data, their scope is currently limited to specific forms of performance evaluation.
arXiv Detail & Related papers (2024-08-09T20:35:10Z) - Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark [12.729687989535359]
evaluating Large Language Models (LLMs) in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts.
We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy.
arXiv Detail & Related papers (2024-06-25T13:20:08Z) - "Give Me an Example Like This": Episodic Active Reinforcement Learning from Demonstrations [3.637365301757111]
Methods like Reinforcement Learning from Expert Demonstrations (RLED) introduce external expert demonstrations to facilitate agent exploration during the learning process.
How to select the best set of human demonstrations that is most beneficial for learning becomes a major concern.
This paper presents EARLY, an algorithm that enables a learning agent to generate optimized queries of expert demonstrations in a trajectory-based feature space.
arXiv Detail & Related papers (2024-06-05T08:52:21Z) - LLMs Could Autonomously Learn Without External Supervision [36.36147944680502]
Large Language Models (LLMs) have traditionally been tethered to human-annotated datasets and predefined training objectives.
This paper presents a transformative approach: Autonomous Learning for LLMs.
This method endows LLMs with the ability to self-educate through direct interaction with text, akin to a human reading and comprehending literature.
arXiv Detail & Related papers (2024-06-02T03:36:37Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - LLaMA Beyond English: An Empirical Study on Language Capability Transfer [49.298360366468934]
We focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language.
We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer.
We employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench.
arXiv Detail & Related papers (2024-01-02T06:29:02Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Position: AI Evaluation Should Learn from How We Test Humans [65.36614996495983]
We argue that psychometrics, a theory originating in the 20th century for human assessment, could be a powerful solution to the challenges in today's AI evaluations.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
This paper introduces GAOKAO-Bench, an intuitive benchmark that employs questions from the Chinese GAOKAO examination as test samples.
With human evaluation, we obtain the converted total score of LLMs, including GPT-4, ChatGPT and ERNIE-Bot.
We also use LLMs to grade the subjective questions, and find that model scores achieve a moderate level of consistency with human scores.
arXiv Detail & Related papers (2023-05-21T14:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.