DynaSplat: Dynamic-Static Gaussian Splatting with Hierarchical Motion Decomposition for Scene Reconstruction
- URL: http://arxiv.org/abs/2506.09836v1
- Date: Wed, 11 Jun 2025 15:13:35 GMT
- Title: DynaSplat: Dynamic-Static Gaussian Splatting with Hierarchical Motion Decomposition for Scene Reconstruction
- Authors: Junli Deng, Ping Shi, Qipei Li, Jinyang Guo,
- Abstract summary: We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes.<n>We classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency.<n>We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements.
- Score: 9.391616497099422
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing intricate, ever-changing environments remains a central ambition in computer vision, yet existing solutions often crumble before the complexity of real-world dynamics. We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes by integrating dynamic-static separation and hierarchical motion modeling. First, we classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency, refining our spatial representation to focus precisely where motion matters. We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements, enabling accurate handling of intricate, non-rigid motions. Finally, we integrate physically-based opacity estimation to ensure visually coherent reconstructions, even under challenging occlusions and perspective shifts. Extensive experiments on challenging datasets reveal that DynaSplat not only surpasses state-of-the-art alternatives in accuracy and realism but also provides a more intuitive, compact, and efficient route to dynamic scene reconstruction.
Related papers
- SplitGaussian: Reconstructing Dynamic Scenes via Visual Geometry Decomposition [14.381223353489062]
We propose textbfSplitGaussian, a novel framework that explicitly decomposes scene representations into static and dynamic components.<n>SplitGaussian outperforms prior state-of-the-art methods in rendering quality, geometric stability, and motion separation.
arXiv Detail & Related papers (2025-08-06T09:00:13Z) - LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling [33.71658540929536]
LocalDyGS is a novel method to model dynamic videos from multi-view inputs for arbitrary viewpoints.<n>Our method is competitive on various fine-scale datasets compared to state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2025-07-03T06:50:33Z) - HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene [11.906835503107189]
We propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation.<n>We show that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
arXiv Detail & Related papers (2025-06-11T08:45:08Z) - Back on Track: Bundle Adjustment for Dynamic Scene Reconstruction [78.27956235915622]
Traditional SLAM systems struggle with highly dynamic scenes commonly found in casual videos.<n>This work leverages a 3D point tracker to separate the camera-induced motion from the observed motion of dynamic objects.<n>Our framework combines the core of traditional SLAM -- bundle adjustment -- with a robust learning-based 3D tracker front-end.
arXiv Detail & Related papers (2025-04-20T07:29:42Z) - 3D Gaussian Splatting against Moving Objects for High-Fidelity Street Scene Reconstruction [1.2603104712715607]
This paper proposes a novel 3D Gaussian point distribution method for dynamic street scene reconstruction.<n>Our approach eliminates moving objects while preserving high-fidelity static scene details.<n> Experimental results demonstrate that our method achieves high reconstruction quality, improved rendering performance, and adaptability in large-scale dynamic environments.
arXiv Detail & Related papers (2025-03-15T05:41:59Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.<n>For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.<n>Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - Adaptive and Temporally Consistent Gaussian Surfels for Multi-view Dynamic Reconstruction [3.9363268745580426]
AT-GS is a novel method for reconstructing high-quality dynamic surfaces from multi-view videos through per-frame incremental optimization.
We reduce temporal jittering in dynamic surfaces by ensuring consistency in curvature maps across consecutive frames.
Our method achieves superior accuracy and temporal coherence in dynamic surface reconstruction, delivering high-fidelity space-time novel view synthesis.
arXiv Detail & Related papers (2024-11-10T21:30:16Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - DEMOS: Dynamic Environment Motion Synthesis in 3D Scenes via Local
Spherical-BEV Perception [54.02566476357383]
We propose the first Dynamic Environment MOtion Synthesis framework (DEMOS) to predict future motion instantly according to the current scene.
We then use it to dynamically update the latent motion for final motion synthesis.
The results show our method outperforms previous works significantly and has great performance in handling dynamic environments.
arXiv Detail & Related papers (2024-03-04T05:38:16Z) - DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting [31.75611852583603]
We argue that the per-point motions of a dynamic scene can be decomposed into a small set of explicit or learned trajectories.<n>Our representation is interpretable, efficient, and expressive enough to offer real-time view synthesis of complex dynamic scene motions.
arXiv Detail & Related papers (2023-11-30T18:59:11Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - DynaVol: Unsupervised Learning for Dynamic Scenes through Object-Centric
Voxelization [67.85434518679382]
We present DynaVol, a 3D scene generative model that unifies geometric structures and object-centric learning.
The key idea is to perform object-centric voxelization to capture the 3D nature of the scene.
voxel features evolve over time through a canonical-space deformation function, forming the basis for global representation learning.
arXiv Detail & Related papers (2023-04-30T05:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.