Refining ensemble $N$-representability of one-body density matrices from partial information
- URL: http://arxiv.org/abs/2506.09960v1
- Date: Wed, 11 Jun 2025 17:36:32 GMT
- Title: Refining ensemble $N$-representability of one-body density matrices from partial information
- Authors: Julia Liebert, Anna O. Schouten, Irma Avdic, Christian Schilling, David A. Mazziotti,
- Abstract summary: We introduce a hierarchy of ensemble one-body $N$-representability problems.<n>We show that this relaxed problem is related to a generalization of Horn's problem.<n>An additional convex relaxation yields a convex polytope that provides physically meaningful restrictions on lattice site occupations.
- Score: 1.0485739694839669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $N$-representability problem places fundamental constraints on reduced density matrices (RDMs) that originate from physical many-fermion quantum states. Motivated by recent developments in functional theories, we introduce a hierarchy of ensemble one-body $N$-representability problems that incorporate partial knowledge of the one-body reduced density matrices (1RDMs) within an ensemble of $N$-fermion states with fixed weights $w_i$. Specifically, we propose a systematic relaxation that reduces the refined problem -- where full 1RDMs are fixed for certain ensemble elements -- to a more tractable form involving only natural occupation number vectors. Remarkably, we show that this relaxed problem is related to a generalization of Horn's problem, enabling an explicit solution by combining its constraints with those of the weighted ensemble $N$-representability conditions. An additional convex relaxation yields a convex polytope that provides physically meaningful restrictions on lattice site occupations in ensemble density functional theory for excited states.
Related papers
- The Large-Scale Structure of Entanglement in Quantum Many-body Systems [44.99833362998488]
We show that the thermodynamic limit of a many-body system can reveal entanglement properties that are hard to detect in finite-size systems.<n>In particular, we show that every gapped phase of matter, even the trivial one, in $Dgeq 2$ dimensions contains models with the strongest possible bipartite large-scale entanglement.
arXiv Detail & Related papers (2025-03-05T19:01:05Z) - Equivalence of the Empirical Risk Minimization to Regularization on the Family of f-Divergences [45.935798913942904]
The solution to empirical risk minimization with $f$-divergence regularization (ERM-$f$DR) is presented.
Examples of the solution for particular choices of the function $f$ are presented.
arXiv Detail & Related papers (2024-02-01T11:12:00Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Reduced Density Matrix Functional Theory for Bosons: Foundations and
Applications [0.0]
This thesis aims to initiate and establish a bosonic RDMFT for both ground state and excited state energy calculations.
Motivated by the Onsager and Penrose criterion, we derive the universal functional for a homogeneous Bose-Einstein condensates (BECs) in the Bogoliubov regime.
In the second part of the thesis, we propose and work out an ensemble RDMFT targeting excitations in bosonic quantum systems.
arXiv Detail & Related papers (2022-05-05T13:28:18Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs [117.82903457289584]
We derive a novel problem-dependent lower-bound for regret in finite-horizon Markov Decision Processes (MDPs)
We show that our lower-bound is considerably smaller than in the general case and it does not scale with the minimum action gap at all.
We show that this last result is attainable (up to $poly(H)$ terms, where $H$ is the horizon) by providing a regret upper-bound based on policy gaps for an optimistic algorithm.
arXiv Detail & Related papers (2021-06-24T13:46:09Z) - Foundation of one-particle reduced density matrix functional theory for
excited states [0.0]
A reduced density matrix functional theory (RDMFT) has been proposed for calculating energies of selected eigenstates of interacting many-fermion systems.
Here, we develop a solid foundation for this so-called $boldsymbolw$-RDMFT and present the details of various derivations.
arXiv Detail & Related papers (2021-06-07T19:03:32Z) - Ensemble reduced density matrix functional theory for excited states and
hierarchical generalization of Pauli's exclusion principle [0.0]
We propose and work out a reduced density matrix functional theory (RDMFT) for calculating energies of eigenstates of interacting many-electron systems.
Various obstacles which historically have doomed such an approach to be unfeasible are overcome.
arXiv Detail & Related papers (2021-06-04T15:49:31Z) - An effective solution to convex $1$-body $N$-representability [0.0]
We study the generalization of the $1$-body $N$-representability problem to ensemble states with fixed spectrum $mathbfw$.
We adapt and further develop tools such as symmetric polytopes, sweep polytopes, and Gale order.
arXiv Detail & Related papers (2021-05-13T17:56:14Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Perturbation theory near degenerate exceptional points [0.0]
The Hamiltonians $H=H_0+lambda V$ are non-Hermitian and lie close to their unobservable exceptional-point (EP) degeneracy limit.
The method of construction of the bound states is described.
The emergence of a counterintuitive connection between the value of $L$, the structure of the matrix elements of perturbations, and the possible loss of the stability and unitarity of the processes of the unfolding of the EP is given a detailed explanation.
arXiv Detail & Related papers (2020-08-02T13:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.