Resa: Transparent Reasoning Models via SAEs
- URL: http://arxiv.org/abs/2506.09967v2
- Date: Fri, 13 Jun 2025 18:01:49 GMT
- Title: Resa: Transparent Reasoning Models via SAEs
- Authors: Shangshang Wang, Julian Asilis, Ömer Faruk Akgül, Enes Burak Bilgin, Ollie Liu, Deqing Fu, Willie Neiswanger,
- Abstract summary: SAE-Tuning is a family of 1.5B reasoning models trained via a novel and efficient sparse autoencoder tuning procedure.<n>When applied to certain base models before further RL post-training, SAE-Tuning retains >97% of its RL-trained counterpart's reasoning performance.<n>It enables reasoning performance such as 43.33% Pass@1 on AIME24 and 90% Pass@1 on AMC23 for only around $1 additional cost.
- Score: 14.617192915344349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How cost-effectively can we elicit strong reasoning in language models by leveraging their underlying representations? We answer this question with Resa, a family of 1.5B reasoning models trained via a novel and efficient sparse autoencoder tuning (SAE-Tuning) procedure. This method first trains an SAE to capture reasoning abilities from a source model, and then uses the trained SAE to guide a standard supervised fine-tuning process to elicit such abilities in a target model, all using verified question-answer data without any reasoning traces. Notably, when applied to certain base models before further RL post-training, SAE-Tuning retains >97% of its RL-trained counterpart's reasoning performance while reducing training costs by >2000x to roughly \$1 and training time by >450x to around 20 minutes. Furthermore, when applied to lightly RL-trained models (e.g., within 1 hour on 2 GPUs), it enables reasoning performance such as 43.33% Pass@1 on AIME24 and 90% Pass@1 on AMC23 for only around \$1 additional cost. Surprisingly, the reasoning abilities extracted via SAEs are potentially both generalizable and modular. Generality means abilities extracted from one dataset still elevate performance on a larger and overlapping corpus. Modularity means abilities extracted from Qwen or Qwen-Math can be attached to the R1-Distill model at test time, without any retraining, and yield comparable gains. Extensive ablations validate these findings and all artifacts are fully open-sourced.
Related papers
- Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models [43.98994504606355]
We propose Reinforcement Learning via Self-Confidence (RLSC) for large language models (LLMs)<n>RLSC uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering.
arXiv Detail & Related papers (2025-06-05T19:55:15Z) - Incentivizing LLMs to Self-Verify Their Answers [20.2584779107763]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.<n>We propose a framework that incentivizes LLMs to self-verify their own answers.<n>We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B.
arXiv Detail & Related papers (2025-06-02T06:54:29Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model [70.77691645678804]
We present the first successful replication of emergent characteristics for multimodal reasoning on only a non-SFT 2B model.<n>Our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately 30% and exceeding both SFT setting by 2%.<n>In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models.
arXiv Detail & Related papers (2025-03-07T04:21:47Z) - An Empirical Study on Eliciting and Improving R1-like Reasoning Models [90.52239241349504]
scaling RL training has become a central technique for implementing such reasoning models.<n>We demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models.<n>We also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models.
arXiv Detail & Related papers (2025-03-06T15:34:27Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - LIMR: Less is More for RL Scaling [25.477841726836836]
We introduce Learning Impact Measurement (LIM), an automated method to evaluate and prioritize training samples.<n>Our method achieves comparable or even superior performance using only 1,389 samples versus the full 8,523 samples dataset.<n>For reproducible research and future innovation, we are open-sourcing LIMR, including implementation of LIM, training and evaluation code, curated datasets, and trained models.
arXiv Detail & Related papers (2025-02-17T15:13:29Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.<n>Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.<n>This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - Self-supervised Analogical Learning using Language Models [59.64260218737556]
We propose SAL, a self-supervised analogical learning framework.<n> SAL mimics the human analogy process and trains models to explicitly transfer high-quality symbolic solutions.<n>We show that the resulting models outperform base language models on a wide range of reasoning benchmarks.
arXiv Detail & Related papers (2025-02-03T02:31:26Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.