Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs
- URL: http://arxiv.org/abs/2506.09983v2
- Date: Mon, 16 Jun 2025 06:09:38 GMT
- Title: Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs
- Authors: Hiroshi Matsuda, Chunpeng Ma, Masayuki Asahara,
- Abstract summary: We propose a novel step-by-step instruction strategy, where universal part-of-speech tagging precedes the prediction of syntactic heads and dependency labels.<n>Our method achieves state-of-the-art accuracy on Universal Dependencies datasets across 17 languages without hallucination or contamination.
- Score: 1.088291253486435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have enabled impressive performance in various tasks. However, standard prompting often struggles to produce structurally valid and accurate outputs, especially in dependency parsing. We propose a novel step-by-step instruction strategy, where universal part-of-speech tagging precedes the prediction of syntactic heads and dependency labels, and a simplified CoNLL-U like output format, our method achieves state-of-the-art accuracy on Universal Dependencies datasets across 17 languages without hallucination or contamination. We further show that multilingual fine-tuning simultaneously improves cross-language generalization performance. Our results highlight the effectiveness of explicit reasoning steps in LLM-based parsing and offer a scalable, format-consistent alternative to bracket-based approaches.
Related papers
- Resource-Efficient Adaptation of Large Language Models for Text Embeddings via Prompt Engineering and Contrastive Fine-tuning [6.549601823162279]
Large Language Models (LLMs) have become a cornerstone in Natural Language Processing (NLP)<n>We explore several adaptation strategies for pre-trained, decoder-only LLMs.
arXiv Detail & Related papers (2025-07-30T14:49:30Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.<n>By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.<n> Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Improving Consistency in Large Language Models through Chain of Guidance [9.040736633675136]
Chain of Guidance (CoG) is a multistep prompting technique that generates highly consistent outputs from Large Language Models (LLMs)<n>We use synthetic data sets comprised of consistent input-output pairs to fine-tune LLMs to produce consistent and correct outputs.<n>Our fine-tuned models are more than twice as consistent compared to base models and show strong generalization capabilities by producing consistent outputs over datasets not used in the fine-tuning process.
arXiv Detail & Related papers (2025-02-21T20:41:37Z) - Stacking Small Language Models for Generalizability [0.0]
Large language models (LLMs) generalize strong performance across different natural language benchmarks.
This paper introduces a new approach called fine-tuning stacks of language models (FSLM)
By fine-tuning each SLM to perform a specific task, this approach breaks down high level reasoning into multiple lower-level steps that specific SLMs are responsible for.
As a result, FSLM allows for lower training and inference costs, and also improves model interpretability as each SLM communicates with the subsequent one through natural language.
arXiv Detail & Related papers (2024-10-21T01:27:29Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)<n>We present a simple yet effective automatic process for creating speech-text pair data.<n>Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Contrastive Instruction Tuning [61.97704869248903]
We propose Contrastive Instruction Tuning to maximize the similarity between semantically equivalent instruction-instance pairs.
Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs' robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy.
arXiv Detail & Related papers (2024-02-17T00:09:32Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - Leveraging Code to Improve In-context Learning for Semantic Parsing [48.66031267718704]
In-context learning (ICL) is an appealing approach for semantic parsing due to its few-shot nature and improved generalization.
We improve the effectiveness of ICL for semantic parsing by (1) using general-purpose programming languages such as Python instead of DSLs, and (2) augmenting prompts with a structured domain description.
arXiv Detail & Related papers (2023-11-16T02:50:06Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Multilingual Chart-based Constituency Parse Extraction from Pre-trained
Language Models [21.2879567125422]
We propose a novel method for extracting complete (binary) parses from pre-trained language models.
By applying our method on multilingual PLMs, it becomes possible to induce non-trivial parses for sentences from nine languages.
arXiv Detail & Related papers (2020-04-08T05:42:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.