NOCL: Node-Oriented Conceptualization LLM for Graph Tasks without Message Passing
- URL: http://arxiv.org/abs/2506.10014v1
- Date: Wed, 28 May 2025 04:48:43 GMT
- Title: NOCL: Node-Oriented Conceptualization LLM for Graph Tasks without Message Passing
- Authors: Wei Li, Mengcheng Lan, Jiaxing Xu, Yiping Ke,
- Abstract summary: Graphs are essential for modeling complex interactions across domains such as social networks, biology, and recommendation systems.<n>Traditional Graph Neural Networks rely heavily on supervised learning, limiting their generalization and applicability in label-scarce scenarios.<n>We propose the Node-Oriented Conceptualization LLM (NOCL) to overcome these limitations.
- Score: 9.909254035707084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are essential for modeling complex interactions across domains such as social networks, biology, and recommendation systems. Traditional Graph Neural Networks, particularly Message Passing Neural Networks (MPNNs), rely heavily on supervised learning, limiting their generalization and applicability in label-scarce scenarios. Recent self-supervised approaches still require labeled fine-tuning, limiting their effectiveness in zero-shot scenarios. Meanwhile, Large Language Models (LLMs) excel in natural language tasks but face significant challenges when applied to graphs, including preserving reasoning abilities, managing extensive token lengths from rich node attributes, and being limited to textual-attributed graphs (TAGs) and a single level task. To overcome these limitations, we propose the Node-Oriented Conceptualization LLM (NOCL), a novel framework that leverages two core techniques: 1) node description, which converts heterogeneous node attributes into structured natural language, extending LLM from TAGs to non-TAGs; 2) node concept, which encodes node descriptions into compact semantic embeddings using pretrained language models, significantly reducing token lengths by up to 93.9% compared to directly using node descriptions. Additionally, our NOCL employs graph representation descriptors to unify graph tasks at various levels into a shared, language-based query format, paving a new direction for Graph Foundation Models. Experimental results validate NOCL's competitive supervised performance relative to traditional MPNNs and hybrid LLM-MPNN methods and demonstrate superior generalization in zero-shot settings.
Related papers
- Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling [1.2805157669888096]
We propose SDM-InstructGLM, a novel instruction-tuned Graph Language Model (InstructGLM) framework that enhances scalability and efficiency without relying on GNNs.<n>Our method introduces a similarity-degree-based biased random walk mechanism, which selectively samples and encodes graph information based on node-feature similarity and degree centrality.<n>Our results demonstrate the feasibility of LLM-only graph processing, enabling scalable and interpretable Graph Language Models (GLMs) optimized through instruction-based fine-tuning.
arXiv Detail & Related papers (2025-05-02T06:08:21Z) - Refining Interactions: Enhancing Anisotropy in Graph Neural Networks with Language Semantics [6.273224130511677]
We introduce LanSAGNN (Language Semantic Anisotropic Graph Neural Network), a framework that extends the concept of anisotropic GNNs to the natural language level.<n>We propose an efficient dual-layer LLMs finetuning architecture to better align LLMs' outputs with graph tasks.
arXiv Detail & Related papers (2025-04-02T07:32:45Z) - LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models [54.82915844507371]
Text-Attributed Graphs (TAGs) are ubiquitous in real-world scenarios.<n>Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures.<n>We propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning.
arXiv Detail & Related papers (2025-03-05T09:45:22Z) - GMLM: Bridging Graph Neural Networks and Language Models for Heterophilic Node Classification [0.0]
We propose textbfGraph Masked Language Model (GMLM), a novel architecture efficiently combining Graph Neural Networks (GNNs) with Pre-trained Language Models (PLMs)<n>GMLM introduces three key innovations: (i) a textbfdynamic active node selection strategy for scalable PLM text processing; (ii) a GNN-specific textbfcontrastive pretraining stage using soft masking with a learnable graph texttt[MASK] token for robust structural representations; and (iii) a textbfdedicated fusion
arXiv Detail & Related papers (2025-02-24T07:44:01Z) - Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? [62.12375949429938]
We propose a multi-modal prompt learning paradigm to adapt pre-trained Graph Neural Networks to downstream tasks and data.<n>Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously.<n>We build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.
arXiv Detail & Related papers (2024-12-11T08:03:35Z) - GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model [63.774726052837266]
We introduce a new architecture that deeply integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs)<n>We introduce three key innovations: (1) Structure-Aware Transformers, which incorporate GNN's message-passing capabilities directly into LLM's transformer layers; (2) Graph-Text Cross-Attention, which processes full, uncompressed text from graph nodes and edges; and (3) GNN-LLM Twin Predictor, enabling LLM's flexible autoregressive generation alongside GNN's scalable one-pass prediction.
arXiv Detail & Related papers (2024-12-08T05:49:58Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
Graphs are a fundamental data structure for representing relationships in real-world scenarios.
Applying Large Language Models (LLMs) to graph-related tasks poses significant challenges.
We introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures.
arXiv Detail & Related papers (2024-10-14T17:21:57Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models [30.867447814409623]
Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs.
We propose a novel approach that integrates Large Language Models (LLMs) and GNNs.
Our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2024-07-19T02:34:10Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
We introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E.<n>Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic'of graphs into comprehensible natural language.<n>Our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs.
arXiv Detail & Related papers (2024-06-19T16:43:56Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.