One For All: LLM-based Heterogeneous Mission Planning in Precision Agriculture
- URL: http://arxiv.org/abs/2506.10106v1
- Date: Wed, 11 Jun 2025 18:45:44 GMT
- Title: One For All: LLM-based Heterogeneous Mission Planning in Precision Agriculture
- Authors: Marcos Abel Zuzuárregui, Mustafa Melih Toslak, Stefano Carpin,
- Abstract summary: We present a natural language (NL) robotic mission planner that enables non-specialists to control heterogeneous robots.<n>Our architecture seamlessly translates human language into intermediate descriptions that can be executed by different robotic platforms.<n>This work represents a significant step toward making robotic automation in precision agriculture more accessible to non-technical users.
- Score: 2.9440788521375585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence is transforming precision agriculture, offering farmers new tools to streamline their daily operations. While these technological advances promise increased efficiency, they often introduce additional complexity and steep learning curves that are particularly challenging for non-technical users who must balance tech adoption with existing workloads. In this paper, we present a natural language (NL) robotic mission planner that enables non-specialists to control heterogeneous robots through a common interface. By leveraging large language models (LLMs) and predefined primitives, our architecture seamlessly translates human language into intermediate descriptions that can be executed by different robotic platforms. With this system, users can formulate complex agricultural missions without writing any code. In the work presented in this paper, we extend our previous system tailored for wheeled robot mission planning through a new class of experiments involving robotic manipulation and computer vision tasks. Our results demonstrate that the architecture is both general enough to support a diverse set of robots and powerful enough to execute complex mission requests. This work represents a significant step toward making robotic automation in precision agriculture more accessible to non-technical users.
Related papers
- A roadmap for AI in robotics [55.87087746398059]
We are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives.<n>This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises.
arXiv Detail & Related papers (2025-07-26T15:18:28Z) - Leveraging LLMs for Mission Planning in Precision Agriculture [3.3088495893219885]
We present an end-to-end system that enables users to assign complex data collection tasks to autonomous robots using natural language instructions.<n>To enhance reusability, mission plans are encoded using an existing IEEE task specification standard, and are executed on robots via ROS2 nodes that bridge high-level mission descriptions with existing ROS libraries.
arXiv Detail & Related papers (2025-06-11T18:25:23Z) - Deploying Foundation Model-Enabled Air and Ground Robots in the Field: Challenges and Opportunities [65.98704516122228]
The integration of foundation models (FMs) into robotics has enabled robots to understand natural language and reason about the semantics in their environments.<n>This paper addresses the deployment of FM-enabled robots in the field, where missions often require a robot to operate in large-scale and unstructured environments.<n>We present the first demonstration of large-scale LLM-enabled robot planning in unstructured environments with several kilometers of missions.
arXiv Detail & Related papers (2025-05-14T15:28:43Z) - RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation [90.81956345363355]
RoBridge is a hierarchical intelligent architecture for general robotic manipulation.<n>It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM)<n>It unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution.
arXiv Detail & Related papers (2025-05-03T06:17:18Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - GRAPPA: Generalizing and Adapting Robot Policies via Online Agentic Guidance [15.774237279917594]
We propose an agentic framework for robot self-guidance and self-improvement.<n>Our framework iteratively grounds a base robot policy to relevant objects in the environment.<n>We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming [4.779196219827508]
We introduce a novel framework for a GPT-powered multi-robot testbed environment, based on a Unity Virtual Reality (VR) setting.
This system allows users to interact with robot agents through natural language, each powered by individual GPT cores.
A user study with 12 participants explores the effectiveness of GPT-4 and, more importantly, user strategies when being given the opportunity to converse in natural language within a multi-robot environment.
arXiv Detail & Related papers (2023-12-12T12:26:48Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.