Probabilistic Variational Contrastive Learning
- URL: http://arxiv.org/abs/2506.10159v1
- Date: Wed, 11 Jun 2025 20:26:07 GMT
- Title: Probabilistic Variational Contrastive Learning
- Authors: Minoh Jeong, Seonho Kim, Alfred Hero,
- Abstract summary: We propose a decoder-free framework that maximizes the evidence lower bound (ELBO)<n>We model the approximate posterior $q_theta(z|x)$ as a projected normal distribution, enabling the sampling of probabilistic embeddings.
- Score: 2.512491726995032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deterministic embeddings learned by contrastive learning (CL) methods such as SimCLR and SupCon achieve state-of-the-art performance but lack a principled mechanism for uncertainty quantification. We propose Variational Contrastive Learning (VCL), a decoder-free framework that maximizes the evidence lower bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction term and adding a KL divergence regularizer to a uniform prior on the unit hypersphere. We model the approximate posterior $q_\theta(z|x)$ as a projected normal distribution, enabling the sampling of probabilistic embeddings. Our two instantiations--VSimCLR and VSupCon--replace deterministic embeddings with samples from $q_\theta(z|x)$ and incorporate a normalized KL term into the loss. Experiments on multiple benchmarks demonstrate that VCL mitigates dimensional collapse, enhances mutual information with class labels, and matches or outperforms deterministic baselines in classification accuracy, all the while providing meaningful uncertainty estimates through the posterior model. VCL thus equips contrastive learning with a probabilistic foundation, serving as a new basis for contrastive approaches.
Related papers
- Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification.<n>We show that the framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains.<n>This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
arXiv Detail & Related papers (2025-04-24T15:39:46Z) - Decision from Suboptimal Classifiers: Excess Risk Pre- and Post-Calibration [52.70324949884702]
We quantify the excess risk incurred using approximate posterior probabilities in batch binary decision-making.<n>We identify regimes where recalibration alone addresses most of the regret, and regimes where the regret is dominated by the grouping loss.<n>On NLP experiments, we show that these quantities identify when the expected gain of more advanced post-training is worth the operational cost.
arXiv Detail & Related papers (2025-03-23T10:52:36Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.<n>We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.<n>Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Low-Rank Approximation of Structural Redundancy for Self-Supervised Learning [2.3072402651280517]
We study the data-generating mechanism for reconstructive SSL to shed light on its effectiveness.
With an infinite amount of labeled samples, we provide a sufficient and necessary condition for perfect linear approximation.
Motivated by the condition, we propose to approximate the redundant component by a low-rank factorization.
arXiv Detail & Related papers (2024-02-10T04:45:27Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Reduction from Complementary-Label Learning to Probability Estimates [15.835526669091157]
Complementary-Label Learning (CLL) is a weakly-supervised learning problem.
This paper introduces a novel perspective--reduction to probability estimates of complementary classes.
It offers explanations of several key CLL approaches and allows us to design an improved algorithm.
arXiv Detail & Related papers (2022-09-20T06:36:51Z) - Integrating Prior Knowledge in Contrastive Learning with Kernel [4.050766659420731]
We use kernel theory to propose a novel loss, called decoupled uniformity, that i) allows the integration of prior knowledge and ii) removes the negative-positive coupling in the original InfoNCE loss.
In an unsupervised setting, we empirically demonstrate that CL benefits from generative models to improve its representation both on natural and medical images.
arXiv Detail & Related papers (2022-06-03T15:43:08Z) - Diverse, Global and Amortised Counterfactual Explanations for
Uncertainty Estimates [31.241489953967694]
We study the diversity of such sets and find that many CLUEs are redundant.
We then propose GLobal AMortised CLUE (GLAM-CLUE), a distinct and novel method which learns amortised mappings on specific groups of uncertain inputs.
Our experiments show that $delta$-CLUE, $nabla$-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.
arXiv Detail & Related papers (2021-12-05T18:27:21Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.