Hybrid discrimination strategy based on photon-number-resolving detectors and mesoscopic twin-beam states
- URL: http://arxiv.org/abs/2506.10160v1
- Date: Wed, 11 Jun 2025 20:26:45 GMT
- Title: Hybrid discrimination strategy based on photon-number-resolving detectors and mesoscopic twin-beam states
- Authors: Luca Razzoli, Alex Pozzoli, Alessia Allevi,
- Abstract summary: State discrimination is a key challenge in the implementation of quantum communication protocols.<n>We propose a hybrid strategy that operates in the mesoscopic intensity regime, leveraging robust quantum states of light.<n>Our approach combines classical and quantum features: reliable state discrimination based on a classical property of light, and security stemming from nonclassical correlations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State discrimination is a key challenge in the implementation of quantum communication protocols. Most optical communication protocols rely on either coherent states of light or fragile single-photon states, making it often difficult to achieve robustness and security simultaneously. In this work, we propose a hybrid strategy that operates in the mesoscopic intensity regime, leveraging robust quantum states of light. Our approach combines classical and quantum features: reliable state discrimination based on a classical property of light, and security stemming from nonclassical correlations. Specifically, the receiver uses photon-number-resolving detectors to access the mean photon number of the binary thermal signals encoding the information. The communication channel exploits twin-beam states, inherently sensitive to eavesdropping attacks, to provide a layer of security. This strategy is scalable, allowing for straightforward extension to more complex signal alphabets, and offers a promising route for robust and secure quantum communication in the mesoscopic intensity domain.
Related papers
- Hybrid Quantum Cryptosystems: Integration of Entanglement-Assisted Decryption and Physical Phase Obfuscation [0.0]
This study introduces a hybrid cryptographic framework for quantum communication.<n>It integrates entanglement-assisted decryption with phase-based physical obfuscation.<n>It is suitable for large-scale secure quantum networks.
arXiv Detail & Related papers (2025-07-07T20:32:53Z) - Quantum Keyless Private Communication under intense background noise [0.0]
Quantum keyless private communication ensures information-theoretic security in free-space communication.<n>We propose a variant of quantum keyless private communication using polarization encoding and experimentally validate both the original on-off keying method and the polarization-multiplexed approach.
arXiv Detail & Related papers (2025-05-12T18:00:04Z) - Selective Filtering of Photonic Quantum Entanglement via Anti-Parity-Time Symmetry [32.09520868775991]
Entanglement is a key resource for quantum computing, sensing, and communication.<n>We introduce a new approach to entanglement retrieval exploiting non-Hermitian systems.<n>Our work offers new insights into using non-Hermitian symmetries to address central challenges in quantum technologies.
arXiv Detail & Related papers (2025-04-08T00:31:07Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.<n>We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Optimizing Secure Quantum Information Transmission in Entanglement-Assisted Quantum Networks [0.0]
This work addresses issues by integrating Quantum Key Distribution (QKD) with Multi-Layer Chaotic Encryption.<n>The framework offers a future-proof approach for defining secure communication protocols in crucial sectors such as medical treatment, forensic computing, and national security.
arXiv Detail & Related papers (2025-01-17T00:51:37Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Time-bin entangled Bell state generation and tomography on thin-film lithium niobate [36.6385169124258]
Lithium niobate-on-insulator has emerged as a revolutionising platform for high-speed classical telecommunication.
We generate maximally entangled quantum states in the time-bin basis using lithium niobate-on-insulator photonics.
Our results, combined with the established large electro-optic bandwidth of lithium niobate, showcase the platform as perfect candidate to realise fibre-coupled, high-speed time-bin quantum communication modules.
arXiv Detail & Related papers (2024-07-04T16:43:36Z) - A robust approach for time-bin encoded photonic quantum information protocols [0.0]
Quantum states encoded in the time-bin degree of freedom of photons represent a fundamental resource for quantum information protocols.
Traditional methods for generating and measuring time-bin encoded quantum states face severe challenges due to optical instabilities, complex setups, and timing resolution requirements.
We propose a robust and scalable protocol to generate and measure high-dimensional time-bin quantum states in a single spatial mode.
arXiv Detail & Related papers (2024-04-24T18:00:54Z) - Quantum Key Distribution With an Integrated Photonic Receiver [41.94295877935867]
Photonic integrated circuits (PICs) are key in advancing quantum technologies for secure communications.
We implement a three-state BB84 protocol with decoy-state method to enhance quantum communications.
One of the most notable results is the extraction of a secret key over a record-breaking 45 dB channel attenuation.
arXiv Detail & Related papers (2023-10-25T15:19:19Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Security of the decoy state method for quantum key distribution [0.0]
Quantum cryptography or, more precisely, quantum key distribution (QKD) is one of the advanced areas in the field of quantum technologies.
This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols.
arXiv Detail & Related papers (2021-01-25T14:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.