AURA: A Multi-Agent Intelligence Framework for Knowledge-Enhanced Cyber Threat Attribution
- URL: http://arxiv.org/abs/2506.10175v1
- Date: Wed, 11 Jun 2025 21:00:51 GMT
- Title: AURA: A Multi-Agent Intelligence Framework for Knowledge-Enhanced Cyber Threat Attribution
- Authors: Nanda Rani, Sandeep Kumar Shukla,
- Abstract summary: AURA (Attribution Using Retrieval-Augmented Agents) is a knowledge-enhanced framework for automated and interpretable APT attribution.<n>AURA ingests diverse threat data including Tactics, Techniques, and Procedures (TTPs), Indicators of Compromise (IoCs), malware details, adversarial tools, and temporal information.
- Score: 3.6586145148601594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective attribution of Advanced Persistent Threats (APTs) increasingly hinges on the ability to correlate behavioral patterns and reason over complex, varied threat intelligence artifacts. We present AURA (Attribution Using Retrieval-Augmented Agents), a multi-agent, knowledge-enhanced framework for automated and interpretable APT attribution. AURA ingests diverse threat data including Tactics, Techniques, and Procedures (TTPs), Indicators of Compromise (IoCs), malware details, adversarial tools, and temporal information, which are processed through a network of collaborative agents. These agents are designed for intelligent query rewriting, context-enriched retrieval from structured threat knowledge bases, and natural language justification of attribution decisions. By combining Retrieval-Augmented Generation (RAG) with Large Language Models (LLMs), AURA enables contextual linking of threat behaviors to known APT groups and supports traceable reasoning across multiple attack phases. Experiments on recent APT campaigns demonstrate AURA's high attribution consistency, expert-aligned justifications, and scalability. This work establishes AURA as a promising direction for advancing transparent, data-driven, and scalable threat attribution using multi-agent intelligence.
Related papers
- Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
Evolving AI systems increasingly deploy multi-agent architectures where autonomous agents collaborate, share information, and delegate tasks through developing protocols.<n>One such risk is a cascading risk: a breach in one agent can cascade through the system, compromising others by exploiting inter-agent trust.<n>In an ACI attack, a malicious input or tool exploit injected at one agent leads to cascading compromises and amplified downstream effects across agents that trust its outputs.
arXiv Detail & Related papers (2025-07-23T13:51:28Z) - CLIProv: A Contrastive Log-to-Intelligence Multimodal Approach for Threat Detection and Provenance Analysis [6.680853786327484]
This paper introduces CLIProv, a novel approach for detecting threat behaviors in a host system.<n>By leveraging attack pattern information in threat intelligence, CLIProv identifies TTPs and generates complete and concise attack scenarios.<n>Compared to state-of-the-art methods, CLIProv achieves higher precision and significantly improved detection efficiency.
arXiv Detail & Related papers (2025-07-12T04:20:00Z) - From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows [1.202155693533555]
Large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval and computation.<n>Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices.<n>We introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications.
arXiv Detail & Related papers (2025-06-29T14:32:32Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
arXiv Detail & Related papers (2025-06-22T12:59:12Z) - Design Patterns for Securing LLM Agents against Prompt Injections [26.6158979023607]
prompt injection attacks exploit the agent's resilience on natural language inputs.<n>We propose a set of principled design patterns for building AI agents with provable resistance to prompt injection.
arXiv Detail & Related papers (2025-06-10T14:23:55Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG)<n>ATAG is a novel framework designed to systematically analyze the security risks associated with AI-agent applications.<n>It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.
arXiv Detail & Related papers (2025-06-03T13:25:40Z) - WebCoT: Enhancing Web Agent Reasoning by Reconstructing Chain-of-Thought in Reflection, Branching, and Rollback [74.82886755416949]
We identify key reasoning skills essential for effective web agents.<n>We reconstruct the agent's reasoning algorithms into chain-of-thought rationales.<n>Our approach yields significant improvements across multiple benchmarks.
arXiv Detail & Related papers (2025-05-26T14:03:37Z) - CoTGuard: Using Chain-of-Thought Triggering for Copyright Protection in Multi-Agent LLM Systems [55.57181090183713]
We introduce CoTGuard, a novel framework for copyright protection that leverages trigger-based detection within Chain-of-Thought reasoning.<n>Specifically, we can activate specific CoT segments and monitor intermediate reasoning steps for unauthorized content reproduction by embedding specific trigger queries into agent prompts.<n>This approach enables fine-grained, interpretable detection of copyright violations in collaborative agent scenarios.
arXiv Detail & Related papers (2025-05-26T01:42:37Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentFuzzer, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentFuzzer on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - Exploring Answer Set Programming for Provenance Graph-Based Cyber Threat Detection: A Novel Approach [4.302577059401172]
Provenance graphs are useful tools for representing system-level activities in cybersecurity.<n>This paper presents a novel approach using ASP to model and analyze provenance graphs.
arXiv Detail & Related papers (2025-01-24T14:57:27Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>The impact of clumsy or even malicious agents--those who frequently make errors in their tasks--on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents on different downstream tasks.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - APT-MMF: An advanced persistent threat actor attribution method based on
multimodal and multilevel feature fusion [10.562355854634566]
Threat actor attribution is a crucial defense strategy for combating advanced persistent threats (APTs)
Here, we propose an APT actor attribution method based on multimodal and multilevel feature fusion (APT-MMF)
We show that our method not only outperforms the existing methods but also demonstrates its good interpretability for attribution analysis tasks.
arXiv Detail & Related papers (2024-02-20T06:19:55Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.