論文の概要: Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition
- arxiv url: http://arxiv.org/abs/2506.10184v1
- Date: Wed, 11 Jun 2025 21:21:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.461516
- Title: Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition
- Title(参考訳): TinyFace認識のための多層パーセプトロンネットワークを用いた遺伝的アルゴリズムの最適化
- Authors: Mohammad Subhi Al-Batah, Mowafaq Salem Alzboon, Muhyeeddin Alqaraleh,
- Abstract要約: この研究は、TinyFace、Heart Disease、Irisの3つの多様なデータセットを通して調査されたニューラルネットワークを実証的に検証する。
この研究は、機能工学とパラメータ最適化に関する文献に貢献し、幅広い機械学習タスクの実践的ガイドラインを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study conducts an empirical examination of MLP networks investigated through a rigorous methodical experimentation process involving three diverse datasets: TinyFace, Heart Disease, and Iris. Study Overview: The study includes three key methods: a) a baseline training using the default settings for the Multi-Layer Perceptron (MLP), b) feature selection using Genetic Algorithm (GA) based refinement c) Principal Component Analysis (PCA) based dimension reduction. The results show important information on how such techniques affect performance. While PCA had showed benefits in low-dimensional and noise-free datasets GA consistently increased accuracy in complex datasets by accurately identifying critical features. Comparison reveals that feature selection and dimensionality reduction play interdependent roles in enhancing MLP performance. The study contributes to the literature on feature engineering and neural network parameter optimization, offering practical guidelines for a wide range of machine learning tasks
- Abstract(参考訳): 本研究は,TinyFace,Heart Disease,Irisの3つの多様なデータセットを含む厳密な方法論的実験プロセスを通じて調査されたMLPネットワークを実証検討した。
研究概要 この研究には3つの主要な方法が含まれる。
a) MLP(Multi-Layer Perceptron)のデフォルト設定を用いたベースライントレーニング
ロ 遺伝的アルゴリズム(GA)を用いた特徴選択
c)主成分分析(PCA)に基づく次元削減
その結果,このような手法がパフォーマンスに与える影響について重要な情報を得た。
PCAは低次元およびノイズフリーなデータセットの利点を示したが、GAは重要な特徴を正確に識別することで、複雑なデータセットの精度を一貫して向上させた。
比較の結果,MLP性能の向上には特徴選択と次元減少が相互依存的な役割を担っていることが明らかとなった。
この研究は、機能工学とニューラルネットワークパラメータ最適化に関する文献に貢献し、幅広い機械学習タスクの実践的ガイドラインを提供する。
関連論文リスト
- Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications [4.395397502990339]
遺伝的アルゴリズム (GA) は, 局所最適化を回避し, 選択プロセス自体を改善することで, 欠点に対する対策として提案されている。
本論文では,アプリケーションにおけるGAベースの特徴選択技術とその適用性について概観する。
論文 参考訳(メタデータ) (2024-09-05T22:28:42Z) - Generative Adversarial Networks for Imputing Sparse Learning Performance [3.0350058108125646]
本稿では,GAIN(Generative Adversarial Imputation Networks)フレームワークを用いて,スパース学習性能データをインプットする手法を提案する。
3次元テンソル空間でスパースデータを計算するGAIN法をカスタマイズした。
この発見は、AIベースの教育における包括的な学習データモデリングと分析を促進する。
論文 参考訳(メタデータ) (2024-07-26T17:09:48Z) - LESEN: Label-Efficient deep learning for Multi-parametric MRI-based
Visual Pathway Segmentation [5.726588626363204]
ラベル効率のよい自己認識型深層学習法(LESEN)を提案する。
LESENは教師なしと教師なしの損失を取り入れ、生徒と教師のモデルが相互に学習できるようにする。
ヒトコネクトームプロジェクト(HCP)のデータセットを用いた実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-01-03T10:22:13Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Triplet Loss-less Center Loss Sampling Strategies in Facial Expression
Recognition Scenarios [5.672538282456803]
ディープ・ニューラルネットワーク(DNN)とディープ・メトリック・ラーニング(DML)技術は、モデルInFERアプリケーションの識別能力を高める。
我々は, 完全合成, 半合成, 予測に基づく負のサンプル選択戦略の3つの戦略を開発した。
より優れた結果を得るために、画素ワイドと素子ワイドのアテンション係数の組み合わせを提供する選択的アテンションモジュールを導入する。
論文 参考訳(メタデータ) (2023-02-08T15:03:36Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
接触のない3Dフィンガーナックルパターンは、識別性、距離からの視認性、利便性、利便性により、効果的な生体認証として出現している。
近年、ディープニューラルネットワークの中間機能を複数のスケールで同時に組み込むディープ・フィーチャー・コラボレーティブ・ネットワークが開発されている。
本稿では,3次元指のナックル画像を表現するために,最小次元の識別特徴ベクトルを学習する可能性を検討することにより,本手法を推し進める。
論文 参考訳(メタデータ) (2023-01-07T20:55:16Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
マルチボクセルパターン解析(MVPA)は、タスクベース機能磁気共鳴画像(fMRI)データから予測モデルを学習する。
MVPAはよく設計された機能セットと十分なサンプルサイズで機能する。
ほとんどのfMRIデータセットはノイズが多く、高次元で、収集するのに高価で、サンプルサイズも小さい。
本稿では,新しい伝達学習手法として共有空間移動学習(SSTL)を提案する。
論文 参考訳(メタデータ) (2020-10-24T08:50:26Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。