The Alignment Trap: Complexity Barriers
- URL: http://arxiv.org/abs/2506.10304v2
- Date: Tue, 24 Jun 2025 23:41:11 GMT
- Title: The Alignment Trap: Complexity Barriers
- Authors: Jasper Yao,
- Abstract summary: This paper argues that AI alignment is not merely difficult, but is founded on a fundamental logical contradiction.<n>We first establish Theion Paradox: we use machine learning precisely because we cannot enumerate all necessary safety rules.<n>This paradox is then confirmed by a set of five independent mathematical proofs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper argues that AI alignment is not merely difficult, but is founded on a fundamental logical contradiction. We first establish The Enumeration Paradox: we use machine learning precisely because we cannot enumerate all necessary safety rules, yet making ML safe requires examples that can only be generated from the very enumeration we admit is impossible. This paradox is then confirmed by a set of five independent mathematical proofs, or "pillars of impossibility." Our main results show that: (1) Geometric Impossibility: The set of safe policies has measure zero, a necessary consequence of projecting infinite-dimensional world-context requirements onto finite-dimensional models. (2) Computational Impossibility: Verifying a policy's safety is coNP-complete, even for non-zero error tolerances. (3) Statistical Impossibility: The training data required for safety (abundant examples of rare disasters) is a logical contradiction and thus unobtainable. (4) Information-Theoretic Impossibility: Safety rules contain more incompressible, arbitrary information than any feasible network can store. (5) Dynamic Impossibility: The optimization process for increasing AI capability is actively hostile to safety, as the gradients for the two objectives are generally anti-aligned. Together, these results demonstrate that the pursuit of safe, highly capable AI is not a matter of overcoming technical hurdles, but of confronting fundamental, interlocking barriers. The paper concludes by presenting a strategic trilemma that these impossibilities force upon the field. A formal verification of the core theorems in Lean4 is currently in progress.
Related papers
- On the Mathematical Impossibility of Safe Universal Approximators [0.0]
We prove that catastrophic failures are an inescapable feature of any useful computational system.<n>We prove this through a three-level argument that leaves no escape routes for any class of universal approximator architecture.
arXiv Detail & Related papers (2025-07-03T01:05:24Z) - Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>We introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - ALRPHFS: Adversarially Learned Risk Patterns with Hierarchical Fast \& Slow Reasoning for Robust Agent Defense [7.923638619678924]
Existing defenses rely on "Safety Checks", which struggle to capture the complex semantic risks posed by harmful user inputs or unsafe agent behaviors.<n>We propose a novel defense framework, ALRPHFS (Adversarially Learned Risk Patterns with Hierarchical Fast & Slow Reasoning)<n>ALRPHFS consists of two core components: (1) an offline adversarial self-learning loop to iteratively refine a generalizable and balanced library of risk patterns, and (2) an online hierarchical fast & slow reasoning engine that balances detection effectiveness with computational efficiency.
arXiv Detail & Related papers (2025-05-25T18:31:48Z) - Advancing Neural Network Verification through Hierarchical Safety Abstract Interpretation [52.626086874715284]
We introduce a novel problem formulation called Abstract DNN-Verification, which verifies a hierarchical structure of unsafe outputs.<n>By leveraging abstract interpretation and reasoning about output reachable sets, our approach enables assessing multiple safety levels during the formal verification process.<n>Our contributions include a theoretical exploration of the relationship between our novel abstract safety formulation and existing approaches.
arXiv Detail & Related papers (2025-05-08T13:29:46Z) - A Domain-Agnostic Scalable AI Safety Ensuring Framework [8.086635708001166]
We propose a novel framework that guarantees AI systems satisfy user-defined safety constraints with specified probabilities.<n>Our approach combines any AI model with an optimization problem that ensures outputs meet safety requirements while maintaining performance.<n>We prove our method guarantees probabilistic safety under mild conditions and establish the first scaling law in AI safety.
arXiv Detail & Related papers (2025-04-29T16:38:35Z) - What is Harm? Baby Don't Hurt Me! On the Impossibility of Complete Harm Specification in AI Alignment [0.0]
"Do no harm" faces a fundamental challenge in artificial intelligence.<n>How can we specify what constitutes harm?<n>We show that complete harm specification is impossible for any system where harm is defined external to its specifications.
arXiv Detail & Related papers (2025-01-27T19:13:39Z) - Towards A Litmus Test for Common Sense [5.280511830552275]
This paper is the second in a planned series aimed at envisioning a path to safe and beneficial artificial intelligence.<n>We propose a more formal litmus test for common sense, adopting an axiomatic approach that combines minimal prior knowledge constraints with diagonal or Godel-style arguments.
arXiv Detail & Related papers (2025-01-17T02:02:12Z) - Can a Bayesian Oracle Prevent Harm from an Agent? [48.12936383352277]
We consider estimating a context-dependent bound on the probability of violating a given safety specification.<n>Noting that different plausible hypotheses about the world could produce very different outcomes, we derive on the safety violation probability predicted under the true but unknown hypothesis.<n>We consider two forms of this result, in the i.i.d. case and in the non-i.i.d. case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.
arXiv Detail & Related papers (2024-08-09T18:10:42Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.<n>To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.<n>Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
We propose a novel approach that introduces three metrics: System Complexity Index (SCI), Lyapunov Exponent for AI Stability (LEAIS), and Nash Equilibrium Robustness (NER)
SCI quantifies the inherent complexity of an AI system, LEAIS captures its stability and sensitivity to perturbations, and NER evaluates its strategic robustness against adversarial manipulation.
arXiv Detail & Related papers (2024-04-07T07:05:59Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Impossibility Results in AI: A Survey [3.198144010381572]
An impossibility theorem demonstrates that a particular problem or set of problems cannot be solved as described in the claim.
We have categorized impossibility theorems applicable to the domain of AI into five categories: deduction, indistinguishability, induction, tradeoffs, and intractability.
We conclude that deductive impossibilities deny 100%-guarantees for security.
arXiv Detail & Related papers (2021-09-01T16:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.