論文の概要: Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2506.10317v1
- Date: Thu, 12 Jun 2025 03:02:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.547915
- Title: Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving
- Title(参考訳): 言語と道路マニュアルを用いた自律走行のための地図再構成
- Authors: Akshar Tumu, Henrik I. Christensen, Marcell Vazquez-Chanlatte, Chikao Tsuchiya, Dhaval Bhanderi,
- Abstract要約: レーントポロジー予測は安全で信頼性の高い自律航法の重要な構成要素である。
この情報は、道路構造を反映した設計コードや、道路機能を捉えた道路名などを通じて、自然言語で符号化された規則に従うことが多い。
我々はこの情報を,地図に基づくオンラインレーントポロジー予測モデルであるSMERFに軽量に拡張する。
- 参考スコア(独自算出の注目度): 2.905122328210335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
- Abstract(参考訳): レーントポロジー予測は安全で信頼性の高い自律航法の重要な構成要素である。
道路環境の正確な理解は、この作業に役立つ。
この情報は、道路構造を反映した設計コードや、道路機能を捉えた道路名などを通じて、自然言語で符号化された規則に従うことが多い。
我々は、OSMマップからの構造化道路メタデータとロードデザインマニュアルからのレーン幅先行情報と道路中心エンコーディングを組み合わせることで、地図優先のオンラインレーントポロジー予測モデルであるSMERFに、この情報を軽量に拡張する。
本手法は,2つのジオ・ディバース複素交叉シナリオに対して評価する。
本手法は車線および交通要素の検出および関連性の向上を示す。
モデル性能を総合的に評価するために,4つのトポロジ対応指標を用いて結果を報告する。
これらの結果は,多種多様なトポロジや条件を一般化し,拡張するためのアプローチの能力を示している。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - NLP-enabled Trajectory Map-matching in Urban Road Networks using a Transformer-based Encoder-decoder [1.3812010983144802]
本研究では,NLPにインスパイアされた機械翻訳としてタスクを定式化する,データ駆動型深層学習型マップマッチングフレームワークを提案する。
変圧器を用いたエンコーダ・デコーダモデルでは,ノイズの多いGPS点の文脈表現を学習し,軌道の挙動や道路構造をエンドツーエンドに推定する。
合成軌道実験により、この手法は文脈認識を統合することによって従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-04-18T18:39:23Z) - Road Graph Generator: Mapping roads at construction sites from GPS data [0.0]
本稿では,GPS軌道から地図構築地点への道路推定手法を提案する。
この課題は, 建設機械の非標準運動パターンが不安定であることから, 独特な課題である。
提案手法はまず,重要な決定点として機能する道路網の交差点を識別し,エッジと接続してグラフを生成する。
論文 参考訳(メタデータ) (2024-02-15T12:53:25Z) - Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method
for Road Updating from Remote Sensing Imagery and Historical Vector Maps [3.350048575501172]
本研究では,道路更新のための半教師付き学習(SRUNet)に基づく道路検出手法を提案する。
提案したSRUNetは,幅広い道路更新作業に対して,安定かつ最新かつ信頼性の高い予測結果を提供する。
論文 参考訳(メタデータ) (2023-04-28T16:51:35Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
本稿では,実環境におけるナビゲーションのパターンを,部分的な観察のみから推測する,初めての自己教師型学習(SSL)手法を提案する。
我々は、DSLPフィールドに最大極大グラフを適合させることにより、グローバルなナビゲーションパターンを推論する方法を実証する。
実験により,我々のSSLモデルはnuScenesデータセット上で2つのSOTA教師付きレーングラフ予測モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-04-26T02:08:46Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
TopoNetは、従来の知覚タスクを超えてトラフィック知識を抽象化できる最初のエンドツーエンドフレームワークである。
TopoNetを,難解なシーン理解ベンチマークOpenLane-V2で評価した。
論文 参考訳(メタデータ) (2023-04-11T15:23:29Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
我々は、分岐とマージによるトポロジー変化を含む多くのレーンを持つ複雑な高速道路のレーン境界を描くことに集中する。
グラフのノードがレーン境界の局所領域の幾何学的および位相的特性を符号化する有向非巡回グラフィカルモデル(DAG)における推論として問題を定式化する。
2つの異なる州における2つの幹線道路における我々のアプローチの有効性を示し、高い精度とリコールと89%の正しいトポロジーを示す。
論文 参考訳(メタデータ) (2020-12-22T21:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。