Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving
- URL: http://arxiv.org/abs/2506.10317v2
- Date: Fri, 20 Jun 2025 00:26:10 GMT
- Title: Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving
- Authors: Akshar Tumu, Henrik I. Christensen, Marcell Vazquez-Chanlatte, Chikao Tsuchiya, Dhaval Bhanderi,
- Abstract summary: Lane-topology prediction is a critical component of safe and reliable autonomous navigation.<n>We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality.<n>We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model.
- Score: 2.905122328210335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
Related papers
- Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps [26.036008442130587]
Most autonomous cars rely on the availability of high-definition (HD) maps.<n>Current research aims to address this constraint by directly predicting HD map elements from onboard sensors.<n>We propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries.
arXiv Detail & Related papers (2025-07-02T06:26:17Z) - LANet: A Lane Boundaries-Aware Approach For Robust Trajectory Prediction [4.096453902709292]
We propose an enhanced motion forecasting model informed by multiple vector map elements, including lane boundaries and road edges.<n>An effective feature fusion strategy is developed to merge information in different vector map components, where the model learns holistic information on road structures.<n>Our method provides a more informative and efficient representation of the driving environment and advances the state of the art for autonomous vehicle motion forecasting.
arXiv Detail & Related papers (2025-07-02T02:49:24Z) - TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - NLP-enabled Trajectory Map-matching in Urban Road Networks using a Transformer-based Encoder-decoder [1.3812010983144802]
This study introduces a data-driven, deep learning-based map-matching framework, formulating the task as machine translation, inspired by NLP.<n>A transformer-based encoder-decoder model learns contextual representations of noisy GPS points to infer trajectory behavior and road structures in an end-to-end manner.<n>Experiments on synthetic trajectories show that this approach outperforms conventional methods by integrating contextual awareness.
arXiv Detail & Related papers (2024-04-18T18:39:23Z) - Road Graph Generator: Mapping roads at construction sites from GPS data [0.0]
We propose a new method for inferring roads from GPS trajectories to map construction sites.
This task presents a unique challenge due to the erratic and non-standard movement patterns of construction machinery.
Our proposed method first identifies intersections in the road network that serve as critical decision points, and then connects them with edges to produce a graph.
arXiv Detail & Related papers (2024-02-15T12:53:25Z) - Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method
for Road Updating from Remote Sensing Imagery and Historical Vector Maps [3.350048575501172]
We propose a road detection method based on semi-supervised learning (SRUNet) specifically for road-updating applications.
The proposed SRUNet can provide stable, up-to-date, and reliable prediction results for a wide range of road renewal tasks.
arXiv Detail & Related papers (2023-04-28T16:51:35Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only.
We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field.
Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset.
arXiv Detail & Related papers (2023-04-26T02:08:46Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
This paper attacks the problem of language-guided navigation in a new perspective.
We use novel semantic navigation maps, which enables robots to carry out natural language instructions and move to a target position based on the map observations.
The proposed approach has noticeable performance gains, especially in long-distance navigation cases.
arXiv Detail & Related papers (2022-03-07T07:40:33Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.