Air in Your Neighborhood: Fine-Grained AQI Forecasting Using Mobile Sensor Data
- URL: http://arxiv.org/abs/2506.10332v1
- Date: Thu, 12 Jun 2025 03:45:36 GMT
- Title: Air in Your Neighborhood: Fine-Grained AQI Forecasting Using Mobile Sensor Data
- Authors: Aaryam Sharma,
- Abstract summary: We predict AQI in 1 km2 neighborhoods using the example of AirDelhi dataset.<n>We surpass existing works by 71.654 MSE a 79% reduction, even on unseen coordinates.<n>New insights about AQI such as the existence of strong repetitive short-term patterns and changing spatial relations are also discovered.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollution has become a significant health risk in developing countries. While governments routinely publish air-quality index (AQI) data to track pollution, these values fail to capture the local reality, as sensors are often very sparse. In this paper, we address this gap by predicting AQI in 1 km^2 neighborhoods, using the example of AirDelhi dataset. Using Spatio-temporal GNNs we surpass existing works by 71.654 MSE a 79% reduction, even on unseen coordinates. New insights about AQI such as the existence of strong repetitive short-term patterns and changing spatial relations are also discovered. The code is available on GitHub.
Related papers
- AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment [46.56288727659417]
Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization.<n>We introduce AirCast, a novel multi-variable air pollution forecasting model.<n>AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations.
arXiv Detail & Related papers (2025-02-25T07:34:18Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Predictive Modelling of Air Quality Index (AQI) Across Diverse Cities and States of India using Machine Learning: Investigating the Influence of Punjab's Stubble Burning on AQI Variability [0.5266869303483376]
This research has predicted the AQI based on different air pollutant concentrations in the atmosphere.
The dataset has the air pollutant concentration from 22 different monitoring stations in different cities of Delhi, Haryana, and Punjab.
Different ML models like CatBoost, XGBoost, Random Forest, SVM regressor, time series model SARIMAX, and deep learning model LSTM have been used to predict AQI.
arXiv Detail & Related papers (2024-04-11T05:03:40Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Gaussian Processes for Monitoring Air-Quality in Kampala [3.173497841606415]
We investigate the use of Gaussian Processes for nowcasting the current air-pollution in places where there are no sensors and forecasting the air-pollution in the future at the sensor locations.
We focus on the city of Kampala in Uganda, using data from AirQo's network of sensors.
arXiv Detail & Related papers (2023-11-28T09:25:23Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
We propose a novel spatial event ranking approach named SpatialRank.
We show that SpatialRank can effectively identify the top riskiest locations of crimes and traffic accidents.
arXiv Detail & Related papers (2023-09-30T06:20:21Z) - Managing Large Dataset Gaps in Urban Air Quality Prediction:
DCU-Insight-AQ at MediaEval 2022 [2.0796717061432006]
We focus on gap filling in air quality data where the task is to predict the AQI at 1, 5 and 7 days into the future.
The scenario is where one or a number of air, weather traffic sensors are offline and explores prediction accuracy.
arXiv Detail & Related papers (2022-12-19T16:53:16Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Predicting air quality via multimodal AI and satellite imagery [0.2492060267829796]
This paper seeks to create a multi-modal machine learning model for predicting air-quality metrics where monitoring stations do not exist.
A new dataset of European pollution monitoring station measurements is created with features including $textitaltitude, population, etc.$ from the ESA Copernicus project.
These predictions are then aggregated to create an "air-quality index" that could be used to compare air quality over different regions.
arXiv Detail & Related papers (2022-11-01T22:56:15Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.