Pisces: An Auto-regressive Foundation Model for Image Understanding and Generation
- URL: http://arxiv.org/abs/2506.10395v2
- Date: Sat, 12 Jul 2025 20:42:24 GMT
- Title: Pisces: An Auto-regressive Foundation Model for Image Understanding and Generation
- Authors: Zhiyang Xu, Jiuhai Chen, Zhaojiang Lin, Xichen Pan, Lifu Huang, Tianyi Zhou, Madian Khabsa, Qifan Wang, Di Jin, Michihiro Yasunaga, Lili Yu, Xi Victoria Lin, Shaoliang Nie,
- Abstract summary: A key challenge in developing unified models lies in the inherent differences between the visual features needed for image understanding versus generation.<n>In this work, we introduce Pisces, an auto-regressive multimodal foundation model that addresses this challenge through a novel decoupled visual encoding architecture.<n>Combined with meticulous data curation, pretraining, and finetuning, Pisces achieves competitive performance in both image understanding and image generation.
- Score: 81.92275347127833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have enabled multimodal foundation models to tackle both image understanding and generation within a unified framework. Despite these gains, unified models often underperform compared to specialized models in either task. A key challenge in developing unified models lies in the inherent differences between the visual features needed for image understanding versus generation, as well as the distinct training processes required for each modality. In this work, we introduce Pisces, an auto-regressive multimodal foundation model that addresses this challenge through a novel decoupled visual encoding architecture and tailored training techniques optimized for multimodal generation. Combined with meticulous data curation, pretraining, and finetuning, Pisces achieves competitive performance in both image understanding and image generation. We evaluate Pisces on over 20 public benchmarks for image understanding, where it demonstrates strong performance across a wide range of tasks. Additionally, on GenEval, a widely adopted benchmark for image generation, Pisces exhibits robust generative capabilities. Our extensive analysis reveals the synergistic relationship between image understanding and generation, and the benefits of using separate visual encoders, advancing the field of unified multimodal models.
Related papers
- BLIP3-o: A Family of Fully Open Unified Multimodal Models-Architecture, Training and Dataset [140.1967962502411]
We introduce a novel approach that employs a diffusion transformer to generate semantically rich CLIP image features.<n>A sequential pretraining strategy for unified models-first training on image understanding and subsequently on image generation offers practical advantages.<n>Building on our innovative model design, training recipe, and datasets, we develop BLIP3-o, a suite of state-of-the-art unified multimodal models.
arXiv Detail & Related papers (2025-05-14T17:11:07Z) - Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation [54.588082888166504]
We present Mogao, a unified framework that enables interleaved multi-modal generation through a causal approach.<n>Mogoo integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance.<n>Experiments show that Mogao achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs.
arXiv Detail & Related papers (2025-05-08T17:58:57Z) - Harmonizing Visual Representations for Unified Multimodal Understanding and Generation [53.01486796503091]
We present emphHarmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder.<n>Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks.
arXiv Detail & Related papers (2025-03-27T20:50:38Z) - Unified Autoregressive Visual Generation and Understanding with Continuous Tokens [52.21981295470491]
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding.<n>Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image.<n>We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other.
arXiv Detail & Related papers (2025-03-17T17:58:30Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
instruct-imagen is a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks.
We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision.
Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain.
arXiv Detail & Related papers (2024-01-03T19:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.