Generative Algorithms for Wildfire Progression Reconstruction from Multi-Modal Satellite Active Fire Measurements and Terrain Height
- URL: http://arxiv.org/abs/2506.10404v1
- Date: Thu, 12 Jun 2025 06:54:51 GMT
- Title: Generative Algorithms for Wildfire Progression Reconstruction from Multi-Modal Satellite Active Fire Measurements and Terrain Height
- Authors: Bryan Shaddy, Brianna Binder, Agnimitra Dasgupta, Haitong Qin, James Haley, Angel Farguell, Kyle Hilburn, Derek V. Mallia, Adam Kochanski, Jan Mandel, Assad Oberai,
- Abstract summary: A conditional Generative Adrial Network is trained with simulations of historic wildfires from the atmosphere-wildfire model WRF-SFIRE.<n>Fire progression is succinctly represented by fire arrival time, and measurements for training are obtained by applying an approximate observation operator to WRF-SFIRE solutions.<n>The model is trained onversas of fire arrival times, measurements, and terrain, and once trained leverages measurements of real fires and corresponding terrain data to generate samples of fire arrival times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing wildfire occurrence has spurred growing interest in wildfire spread prediction. However, even the most complex wildfire models diverge from observed progression during multi-day simulations, motivating need for data assimilation. A useful approach to assimilating measurement data into complex coupled atmosphere-wildfire models is to estimate wildfire progression from measurements and use this progression to develop a matching atmospheric state. In this study, an approach is developed for estimating fire progression from VIIRS active fire measurements, GOES-derived ignition times, and terrain height data. A conditional Generative Adversarial Network is trained with simulations of historic wildfires from the atmosphere-wildfire model WRF-SFIRE, thus allowing incorporation of WRF-SFIRE physics into estimates. Fire progression is succinctly represented by fire arrival time, and measurements for training are obtained by applying an approximate observation operator to WRF-SFIRE solutions, eliminating need for satellite data during training. The model is trained on tuples of fire arrival times, measurements, and terrain, and once trained leverages measurements of real fires and corresponding terrain data to generate samples of fire arrival times. The approach is validated on five Pacific US wildfires, with results compared against high-resolution perimeters measured via aircraft, finding an average Sorensen-Dice coefficient of 0.81. The influence of terrain height on the arrival time inference is also evaluated and it is observed that terrain has minimal influence when the inference is conditioned on satellite measurements.
Related papers
- Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data [15.516417504988313]
We develop a deep-learning-based predictive model, Fire-Image-DenseNet (FIDN)<n>FIDN uses spatial features derived from both near real-time and reanalysis data on the environmental and meteorological drivers of wildfire.<n>It shows higher accuracy, with a mean squared error (MSE) about 82% and 67% lower than those of the predictive models based on cellular automata (CA) and the minimum travel time (MTT) approaches.
arXiv Detail & Related papers (2024-12-02T11:35:31Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
arXiv Detail & Related papers (2023-11-25T22:09:14Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
Wildfires pose significant threats to human and animal lives, ecosystems, and socio-economic stability.
In this work, we create and introduce a machine-learning ready dataset we name FLOGA (Forest wiLdfire Observations for the Greek Area)
This dataset is unique as it comprises of satellite imagery acquired before and after a wildfire event.
We use FLOGA to provide a thorough comparison of multiple Machine Learning and Deep Learning algorithms for the automatic extraction of burnt areas.
arXiv Detail & Related papers (2023-11-06T18:42:05Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
A generative model is proposed using a three-dimensional Vector-Quantized Variational Autoencoders.
The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire.
Numerical results show that the model succeed in generating coherent and structured fire scenarios.
arXiv Detail & Related papers (2023-08-05T06:54:18Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Modeling Wildfire Perimeter Evolution using Deep Neural Networks [0.0]
We propose a wildfire spreadingmodel that predicts the evolution of the wildfire perimeter in 24 hour periods.
The model is able to learn wildfirespreading dynamics from real historic data sets from wildfires in the Western Sierra Nevada Mountains in Cal-ifornia.
arXiv Detail & Related papers (2020-09-08T20:06:01Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.