Modelling wildland fire burn severity in California using a spatial
Super Learner approach
- URL: http://arxiv.org/abs/2311.16187v1
- Date: Sat, 25 Nov 2023 22:09:14 GMT
- Title: Modelling wildland fire burn severity in California using a spatial
Super Learner approach
- Authors: Nicholas Simafranca, Bryant Willoughby, Erin O'Neil, Sophie Farr,
Brian J Reich, Naomi Giertych, Margaret Johnson, Madeleine Pascolini-Campbell
- Abstract summary: Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
- Score: 0.04188114563181614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the increasing prevalence of wildland fires in the Western US, there is
a critical need to develop tools to understand and accurately predict burn
severity. We develop a machine learning model to predict post-fire burn
severity using pre-fire remotely sensed data. Hydrological, ecological, and
topographical variables collected from four regions of California - the sites
of the Kincade fire (2019), the CZU Lightning Complex fire (2020), the Windy
fire (2021), and the KNP Fire (2021) - are used as predictors of the difference
normalized burn ratio. We hypothesize that a Super Learner (SL) algorithm that
accounts for spatial autocorrelation using Vecchia's Gaussian approximation
will accurately model burn severity. In all combinations of test and training
sets explored, the results of our model showed the SL algorithm outperformed
standard Linear Regression methods. After fitting and verifying the performance
of the SL model, we use interpretable machine learning tools to determine the
main drivers of severe burn damage, including greenness, elevation and fire
weather variables. These findings provide actionable insights that enable
communities to strategize interventions, such as early fire detection systems,
pre-fire season vegetation clearing activities, and resource allocation during
emergency responses. When implemented, this model has the potential to minimize
the loss of human life, property, resources, and ecosystems in California.
Related papers
- Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management [2.158876211806538]
This paper introduces a novel machine learning (ML) framework that enables rapid emulation of prescribed fires.
By incorporating domain knowledge, the proposed method helps reduce physical inconsistencies in fuel density estimates in data-scarce scenarios.
We also overcome the problem of biased estimation of fire spread metrics by incorporating a hierarchical modeling structure.
arXiv Detail & Related papers (2023-10-02T19:38:04Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior [0.0]
High-fidelity models are too computationally expensive for use in real-time fire response.
Low-fidelity models sacrifice some physical accuracy and generalizability via the integration of empirical measurements.
Machine learning techniques offer the ability to bridge these objectives by learning first-principles physics.
arXiv Detail & Related papers (2022-10-28T21:23:03Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
Wildfires are uncontrolled fires in the environment that can be caused by humans or nature.
In 2020 alone, wildfires in California have burned 4.2 million acres, damaged 10,500 buildings or structures, and killed more than 31 people.
The objective of the research is to detect forest fires in their earlier stages to prevent them from spreading.
arXiv Detail & Related papers (2021-09-10T19:30:37Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.