論文の概要: Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
- arxiv url: http://arxiv.org/abs/2506.10408v1
- Date: Thu, 12 Jun 2025 07:01:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.618142
- Title: Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
- Title(参考訳): システム1またはシステム2によるRAGの推論:産業挑戦のためのエージェント検索型生成の推論に関する調査
- Authors: Jintao Liang, Gang Su, Huifeng Lin, You Wu, Rui Zhao, Ziyue Li,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、大規模言語モデルの知識制限を克服する強力なフレームワークとして登場した。
これらの課題に対処するため、フィールドは推論エージェントRAG(Reasoning Agentic RAG)へと移行した。
- 参考スコア(独自算出の注目度): 6.615766570234612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to overcome the knowledge limitations of Large Language Models (LLMs) by integrating external retrieval with language generation. While early RAG systems based on static pipelines have shown effectiveness in well-structured tasks, they struggle in real-world scenarios requiring complex reasoning, dynamic retrieval, and multi-modal integration. To address these challenges, the field has shifted toward Reasoning Agentic RAG, a paradigm that embeds decision-making and adaptive tool use directly into the retrieval process. In this paper, we present a comprehensive review of Reasoning Agentic RAG methods, categorizing them into two primary systems: predefined reasoning, which follows fixed modular pipelines to boost reasoning, and agentic reasoning, where the model autonomously orchestrates tool interaction during inference. We analyze representative techniques under both paradigms, covering architectural design, reasoning strategies, and tool coordination. Finally, we discuss key research challenges and propose future directions to advance the flexibility, robustness, and applicability of reasoning agentic RAG systems. Our collection of the relevant research has been organized into a https://github.com/ByebyeMonica/Reasoning-Agentic-RAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、言語生成と外部検索を統合することで、LLM(Large Language Models)の知識制限を克服する強力なフレームワークとして登場した。
静的パイプラインに基づく初期のRAGシステムは、よく構造化されたタスクにおいて有効性を示しているが、複雑な推論、動的検索、マルチモーダル統合を必要とする現実のシナリオでは苦労している。
これらの課題に対処するため、フィールドは推論エージェントRAG(Reasoning Agentic RAG)へと移行した。
本稿では、Reasoning Agentic RAG法を総合的にレビューし、それらを2つの主要なシステムに分類する。
アーキテクチャ設計や推論戦略,ツールコーディネートといった,両パラダイムの代表的なテクニックを分析します。
最後に、主要な研究課題について議論し、エージェントRAGシステムの柔軟性、堅牢性、適用性を向上させるための今後の方向性を提案する。
関連研究の収集は、https://github.com/ByebyeMonica/Reasoning-Agentic-RAGにまとめられた。
関連論文リスト
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - MA-RAG: Multi-Agent Retrieval-Augmented Generation via Collaborative Chain-of-Thought Reasoning [43.66966457772646]
MA-RAGは、タスク認識推論でRAGパイプラインの各ステージに取り組むために、特別なAIエージェントの協力的なセットを編成する。
我々の設計では、モデルが微調整されることなく、情報の流れをきめ細かな制御が可能である。
このモジュラーおよび推論駆動アーキテクチャにより、MA-RAGは堅牢で解釈可能な結果を提供できる。
論文 参考訳(メタデータ) (2025-05-26T15:05:18Z) - Synergizing RAG and Reasoning: A Systematic Review [8.842022673771147]
大規模言語モデル(LLM)の最近のブレークスルーは、レトリーバル強化世代(RAG)を前例のないレベルまで押し上げている。
本稿では,RAGと推論の協調的相互作用を体系的に検討する。
論文 参考訳(メタデータ) (2025-04-22T13:55:13Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1のような推論システムは、複雑な推論タスクを解く際、顕著な能力を示した。
推論モデルをトレーニングするために、模倣、探索、自己改善のフレームワークを導入します。
提案手法は,産業レベルの推論システムと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-12T16:20:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。