論文の概要: Synergizing RAG and Reasoning: A Systematic Review
- arxiv url: http://arxiv.org/abs/2504.15909v2
- Date: Thu, 24 Apr 2025 12:39:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.793245
- Title: Synergizing RAG and Reasoning: A Systematic Review
- Title(参考訳): RAGとReasoningの同期: システムレビュー
- Authors: Yunfan Gao, Yun Xiong, Yijie Zhong, Yuxi Bi, Ming Xue, Haofen Wang,
- Abstract要約: 大規模言語モデル(LLM)の最近のブレークスルーは、レトリーバル強化世代(RAG)を前例のないレベルまで押し上げている。
本稿では,RAGと推論の協調的相互作用を体系的に検討する。
- 参考スコア(独自算出の注目度): 8.842022673771147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent breakthroughs in large language models (LLMs), particularly in reasoning capabilities, have propelled Retrieval-Augmented Generation (RAG) to unprecedented levels. By synergizing retrieval mechanisms with advanced reasoning, LLMs can now tackle increasingly complex problems. This paper presents a systematic review of the collaborative interplay between RAG and reasoning, clearly defining "reasoning" within the RAG context. It construct a comprehensive taxonomy encompassing multi-dimensional collaborative objectives, representative paradigms, and technical implementations, and analyze the bidirectional synergy methods. Additionally, we critically evaluate current limitations in RAG assessment, including the absence of intermediate supervision for multi-step reasoning and practical challenges related to cost-risk trade-offs. To bridge theory and practice, we provide practical guidelines tailored to diverse real-world applications. Finally, we identify promising research directions, such as graph-based knowledge integration, hybrid model collaboration, and RL-driven optimization. Overall, this work presents a theoretical framework and practical foundation to advance RAG systems in academia and industry, fostering the next generation of RAG solutions.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近のブレークスルー、特に推論能力は、レトリーバル拡張生成(RAG)を前例のないレベルまで推進している。
検索機構を高度な推論と相乗化することで、LLMはますます複雑な問題に取り組むことができる。
本稿では、RAGと推論の協調的相互作用を体系的に検討し、RAGコンテキスト内で「推論」を明確に定義する。
多次元協調目的、代表的パラダイム、技術的実装を含む包括的分類を構築し、双方向のシナジー手法を分析する。
さらに、多段階推論の中間的監督の欠如やコストリスクのトレードオフに関する実践的課題など、RAG評価における現在の限界を批判的に評価する。
理論と実践を橋渡しするために,現実世界の多様な応用に適した実践的ガイドラインを提供する。
最後に、グラフベースの知識統合、ハイブリッドモデル協調、RL駆動最適化など、有望な研究方向を特定する。
全体として、この研究は、学術・産業におけるRAGシステムを進化させるための理論的枠組みと実践的基盤を示し、次世代のRAGソリューションを育成する。
関連論文リスト
- A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - A Survey of Query Optimization in Large Language Models [10.255235456427037]
RAGは、動的に検索し、最新の関連情報を活用することによって、大規模言語モデルの限界を緩和する。
QOは重要な要素として現れ、RAGの検索段階の有効性を決定する上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-12-23T13:26:04Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
大型言語モデル(LLM)の性能向上のための有望なアプローチとして、Chain-of-Thought(CoT)推論が登場した。
本稿では,これらの課題に対処するための新しい推論境界フレームワーク(RBF)を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:26:28Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks [15.241520961365051]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)の機能を大幅に強化した。
本稿では,既存のRAGパラダイムの限界について検討し,モジュール型RAGフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-07-26T03:45:30Z) - RAG Does Not Work for Enterprises [0.0]
Retrieval-Augmented Generation (RAG)は、知識検索を取り入れた大規模言語モデル出力の精度と妥当性を向上させる。
企業におけるRAGの実装は、データセキュリティ、正確性、スケーラビリティ、統合に関する課題を引き起こす。
本稿では、エンタープライズRAGのユニークな要件について検討し、現在のアプローチと限界を調査し、セマンティック検索、ハイブリッドクエリ、最適化された検索の潜在的な進歩について考察する。
論文 参考訳(メタデータ) (2024-05-31T23:30:52Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
本稿では,Retrieval-Augmented Generation (RAG)システムの評価とベンチマークについて概観する。
具体的には、検索・生成要素の定量化指標(関連性、正確性、忠実性など)について検討・比較する。
次に、様々なデータセットとメトリクスを分析し、現在のベンチマークの限界について議論し、RAGベンチマークの分野を前進させる潜在的な方向性を提案する。
論文 参考訳(メタデータ) (2024-05-13T02:33:25Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。