Beyond the Battlefield: Framing Analysis of Media Coverage in Conflict Reporting
- URL: http://arxiv.org/abs/2506.10421v1
- Date: Thu, 12 Jun 2025 07:20:54 GMT
- Title: Beyond the Battlefield: Framing Analysis of Media Coverage in Conflict Reporting
- Authors: Avneet Kaur, Arnav Arora,
- Abstract summary: We identify indicators of war and peace journalism in a corpus of news articles reporting on the Israel-Palestine war.<n>Our analysis reveals a higher focus on war based reporting rather than peace based.<n>We also show substantial differences in reporting across the US, UK, and Middle Eastern news outlets in framing who the assailant and victims of the conflict are.
- Score: 5.9506747319048845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Framing used by news media, especially in times of conflict, can have substantial impact on readers' opinion, potentially aggravating the conflict itself. Current studies on the topic of conflict framing have limited insights due to their qualitative nature or only look at surface level generic frames without going deeper. In this work, we identify indicators of war and peace journalism, as outlined by prior work in conflict studies, in a corpus of news articles reporting on the Israel-Palestine war. For our analysis, we use computational approaches, using a combination of frame semantics and large language models to identify both communicative framing and its connection to linguistic framing. Our analysis reveals a higher focus on war based reporting rather than peace based. We also show substantial differences in reporting across the US, UK, and Middle Eastern news outlets in framing who the assailant and victims of the conflict are, surfacing biases within the media.
Related papers
- Propaganda and Information Dissemination in the Russo-Ukrainian War: Natural Language Processing of Russian and Western Twitter Narratives [0.0]
This article provides an analysis of tweets from propaganda accounts and trusted accounts collected from the onset of the war.<n>We utilise natural language processing and machine learning algorithms to assess the sentiment and identify key themes.<n>Our findings indicate distinct strategies in how information is created, spread, and targeted at different audiences by both sides.
arXiv Detail & Related papers (2025-06-02T15:52:04Z) - Conflicts in Texts: Data, Implications and Challenges [58.03478157713084]
Conflicts could reflect the complexity of situations, changes that need to be explained and dealt with, difficulties in data annotation, and mistakes in generated outputs.<n>This survey categorizes these conflicts into three key areas: (1) natural texts on the web, where factual inconsistencies, subjective biases, and multiple perspectives introduce contradictions; (2) human-annotated data, where annotator disagreements, mistakes, and societal biases impact model training; and (3) model interactions, where hallucinations and knowledge conflicts emerge during deployment.<n>We highlight key challenges and future directions for developing conflict-aware NLP systems that can reason over and reconcile conflicting information more effectively
arXiv Detail & Related papers (2025-04-28T04:24:01Z) - BAR-Analytics: A Web-based Platform for Analyzing Information Spreading Barriers in News: Comparative Analysis Across Multiple Barriers and Events [1.6999370482438731]
We use the BAR-Analytics platform to analyze news dissemination across geographical, economic, political, and cultural boundaries.<n>Our results show distinct patterns in news coverage: the Israeli-Palestinian conflict tends to have more negative sentiment with a focus on human rights, while the Russia-Ukraine conflict is more positive, emphasizing election interference.
arXiv Detail & Related papers (2025-03-31T15:36:55Z) - NLP Case Study on Predicting the Before and After of the Ukraine-Russia and Hamas-Israel Conflicts [2.07180164747172]
We propose a method to predict toxicity and other textual attributes through the use of natural language processing (NLP) techniques for two recent events.
This article provides a basis for exploration in future conflicts with hopes to mitigate risk through the analysis of social media before and after a conflict begins.
arXiv Detail & Related papers (2024-10-08T23:46:56Z) - What distinguishes conspiracy from critical narratives? A computational analysis of oppositional discourse [42.0918839418817]
We propose a novel topic-agnostic annotation scheme that distinguishes between conspiracies and critical texts.
We also contribute with the multilingual XAI-DisInfodemics corpus (English and Spanish), which contains a high-quality annotation of Telegram messages.
arXiv Detail & Related papers (2024-07-15T14:18:47Z) - Framing Analysis of Health-Related Narratives: Conspiracy versus
Mainstream Media [3.3181276611945263]
We investigate how the framing of health-related topics, such as COVID-19 and other diseases, differs between conspiracy and mainstream websites.
We find that health-related narratives in conspiracy media are predominantly framed in terms of beliefs, while mainstream media tend to present them in terms of science.
arXiv Detail & Related papers (2024-01-18T14:56:23Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
We focus on the nuanced distinctions in framing of social media and traditional media outlets concerning a series of U.S. Supreme Court rulings.
We observe significant polarization in the news media's treatment of affirmative action and abortion rights, whereas the topic of student loans tends to exhibit a greater degree of consensus.
arXiv Detail & Related papers (2023-09-18T06:40:21Z) - Getting Sick After Seeing a Doctor? Diagnosing and Mitigating Knowledge Conflicts in Event Temporal Reasoning [87.92209048521153]
Event temporal reasoning aims at identifying the temporal relations between two or more events from narratives.
Knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model.
arXiv Detail & Related papers (2023-05-24T10:04:06Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.