BAR-Analytics: A Web-based Platform for Analyzing Information Spreading Barriers in News: Comparative Analysis Across Multiple Barriers and Events
- URL: http://arxiv.org/abs/2503.24220v1
- Date: Mon, 31 Mar 2025 15:36:55 GMT
- Title: BAR-Analytics: A Web-based Platform for Analyzing Information Spreading Barriers in News: Comparative Analysis Across Multiple Barriers and Events
- Authors: Abdul Sittar, Dunja Mladenic, Alenka Gucek, Marko Grobelnik,
- Abstract summary: We use the BAR-Analytics platform to analyze news dissemination across geographical, economic, political, and cultural boundaries.<n>Our results show distinct patterns in news coverage: the Israeli-Palestinian conflict tends to have more negative sentiment with a focus on human rights, while the Russia-Ukraine conflict is more positive, emphasizing election interference.
- Score: 1.6999370482438731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents BAR-Analytics, a web-based, open-source platform designed to analyze news dissemination across geographical, economic, political, and cultural boundaries. Using the Russian-Ukrainian and Israeli-Palestinian conflicts as case studies, the platform integrates four analytical methods: propagation analysis, trend analysis, sentiment analysis, and temporal topic modeling. Over 350,000 articles were collected and analyzed, with a focus on economic disparities and geographical influences using metadata enrichment. We evaluate the case studies using coherence, sentiment polarity, topic frequency, and trend shifts as key metrics. Our results show distinct patterns in news coverage: the Israeli-Palestinian conflict tends to have more negative sentiment with a focus on human rights, while the Russia-Ukraine conflict is more positive, emphasizing election interference. These findings highlight the influence of political, economic, and regional factors in shaping media narratives across different conflicts.
Related papers
- Conflicts in Texts: Data, Implications and Challenges [58.03478157713084]
Conflicts could reflect the complexity of situations, changes that need to be explained and dealt with, difficulties in data annotation, and mistakes in generated outputs.
This survey categorizes these conflicts into three key areas: (1) natural texts on the web, where factual inconsistencies, subjective biases, and multiple perspectives introduce contradictions; (2) human-annotated data, where annotator disagreements, mistakes, and societal biases impact model training; and (3) model interactions, where hallucinations and knowledge conflicts emerge during deployment.
We highlight key challenges and future directions for developing conflict-aware NLP systems that can reason over and reconcile conflicting information more effectively
arXiv Detail & Related papers (2025-04-28T04:24:01Z) - Social media polarization during conflict: Insights from an ideological stance dataset on Israel-Palestine Reddit comments [0.0]
This study analyzed 9,969 Reddit comments related to the Israel-Palestine conflict, collected between October 2023 and August 2024.<n>Various approaches, including machine learning, pre-trained language models, neural networks, and prompt engineering strategies were employed to classify these stances.
arXiv Detail & Related papers (2025-02-01T12:26:11Z) - A Systematic Review of Echo Chamber Research: Comparative Analysis of Conceptualizations, Operationalizations, and Varying Outcomes [4.9873153106566575]
This systematic review synthesizes research on echo chambers and filter bubbles to explore the reasons behind dissent.<n>It provides a taxonomy of conceptualizations and operationalizations, analyzing how measurement approaches and contextual factors influence outcomes.
arXiv Detail & Related papers (2024-07-09T07:56:26Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Sentiment Analysis of Political Tweets for Israel using Machine Learning [0.0]
This research proposes an analytical study using Israeli political Twitter data to interpret public opinion towards the Palestinian-Israeli conflict.
The attitudes of ethnic groups and opinion leaders in the form of tweets are analyzed using Machine Learning algorithms.
arXiv Detail & Related papers (2022-04-12T12:07:43Z) - Exposing the Obscured Influence of State-Controlled Media: A Causal
Estimation of Influence Between Media Outlets Via Quotation Propagation [0.0]
This study quantifies influence between media outlets by applying a novel methodology that uses causal effect estimation on networks and transformer language models.
We demonstrate the obscured influence of state-controlled outlets over other outlets, regardless of orientation, by analyzing a large dataset of quotations from over 100 thousand articles published by the most prominent European and Russian traditional media outlets.
arXiv Detail & Related papers (2022-01-16T06:50:40Z) - Visual Sentiment Analysis from Disaster Images in Social Media [11.075683976162766]
This article focuses on visual sentiment analysis in a societal important domain, namely disaster analysis in social media.
We propose a deep visual sentiment analyzer for disaster related images, covering different aspects of visual sentiment analysis.
We believe the proposed system can contribute toward more livable communities by helping different stakeholders.
arXiv Detail & Related papers (2020-09-04T11:29:52Z) - Sentiment Analysis Based on Deep Learning: A Comparative Study [69.09570726777817]
The study of public opinion can provide us with valuable information.
The efficiency and accuracy of sentiment analysis is being hindered by the challenges encountered in natural language processing.
This paper reviews the latest studies that have employed deep learning to solve sentiment analysis problems.
arXiv Detail & Related papers (2020-06-05T16:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.