Low-Barrier Dataset Collection with Real Human Body for Interactive Per-Garment Virtual Try-On
- URL: http://arxiv.org/abs/2506.10468v1
- Date: Thu, 12 Jun 2025 08:18:49 GMT
- Title: Low-Barrier Dataset Collection with Real Human Body for Interactive Per-Garment Virtual Try-On
- Authors: Zaiqiang Wu, Yechen Li, Jingyuan Liu, Yuki Shibata, Takayuki Hori, I-Chao Shen, Takeo Igarashi,
- Abstract summary: Existing image-based virtual try-on methods are often limited to the front view and lack real-time performance.<n>We propose a low-barrier approach for collecting per-garment datasets using real human bodies.
- Score: 10.776018771066294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing image-based virtual try-on methods are often limited to the front view and lack real-time performance. While per-garment virtual try-on methods have tackled these issues by capturing per-garment datasets and training per-garment neural networks, they still encounter practical limitations: (1) the robotic mannequin used to capture per-garment datasets is prohibitively expensive for widespread adoption and fails to accurately replicate natural human body deformation; (2) the synthesized garments often misalign with the human body. To address these challenges, we propose a low-barrier approach for collecting per-garment datasets using real human bodies, eliminating the necessity for a customized robotic mannequin. We also introduce a hybrid person representation that enhances the existing intermediate representation with a simplified DensePose map. This ensures accurate alignment of synthesized garment images with the human body and enables human-garment interaction without the need for customized wearable devices. We performed qualitative and quantitative evaluations against other state-of-the-art image-based virtual try-on methods and conducted ablation studies to demonstrate the superiority of our method regarding image quality and temporal consistency. Finally, our user study results indicated that most participants found our virtual try-on system helpful for making garment purchasing decisions.
Related papers
- Enhancing Virtual Try-On with Synthetic Pairs and Error-Aware Noise Scheduling [20.072689146353348]
We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual.<n>We also propose an Error-Aware Refinement-based Schr"odinger Bridge (EARSB) that surgically targets localized generation errors.<n>In user studies, our model is preferred by the users in an average of 59% of cases.
arXiv Detail & Related papers (2025-01-08T18:25:50Z) - Controllable Human Image Generation with Personalized Multi-Garments [46.042383679103125]
BootComp is a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments.<n>We propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs.<n>We show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain.
arXiv Detail & Related papers (2024-11-25T12:37:13Z) - Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
We introduce Self-Explainable Affordance learning (SEA) with embodied caption.
SEA enables robots to articulate their intentions and bridge the gap between explainable vision-language caption and visual affordance learning.
We propose a novel model to effectively combine affordance grounding with self-explanation in a simple but efficient manner.
arXiv Detail & Related papers (2024-04-08T15:22:38Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
We introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos.
A pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts.
Our method is able to render natural garment dynamics that deviate highly from the body and well to generalize to both unseen views and poses.
arXiv Detail & Related papers (2024-01-27T08:48:18Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
We present a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model.
We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks.
Our approach outperforms previous baselines by up to 5%.
arXiv Detail & Related papers (2023-11-10T18:38:14Z) - Procedural Humans for Computer Vision [1.9550079119934403]
We build a parametric model of the face and body, including articulated hands, to generate realistic images of humans based on this body model.
We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety.
arXiv Detail & Related papers (2023-01-03T15:44:48Z) - Pose Guided Human Image Synthesis with Partially Decoupled GAN [25.800174118151638]
Pose Guided Human Image Synthesis (PGHIS) is a challenging task of transforming a human image from the reference pose to a target pose.
We propose a method by decoupling the human body into several parts to guide the synthesis of a realistic image of the person.
In addition, we design a multi-head attention-based module for PGHIS.
arXiv Detail & Related papers (2022-10-07T15:31:37Z) - Drivable Volumetric Avatars using Texel-Aligned Features [52.89305658071045]
Photo telepresence requires both high-fidelity body modeling and faithful driving to enable dynamically synthesized appearance.
We propose an end-to-end framework that addresses two core challenges in modeling and driving full-body avatars of real people.
arXiv Detail & Related papers (2022-07-20T09:28:16Z) - Style and Pose Control for Image Synthesis of Humans from a Single
Monocular View [78.6284090004218]
StylePoseGAN is a non-controllable generator to accept conditioning of pose and appearance separately.
Our network can be trained in a fully supervised way with human images to disentangle pose, appearance and body parts.
StylePoseGAN achieves state-of-the-art image generation fidelity on common perceptual metrics.
arXiv Detail & Related papers (2021-02-22T18:50:47Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
We propose the use of a Convolution Neural Network (CNN) to segment the robot hand from an image in an egocentric view.
We fine-tuned the Mask-RCNN network for the specific task of segmenting the hand of the humanoid robot Vizzy.
arXiv Detail & Related papers (2021-02-09T10:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.