Leveraging Low-rank Factorizations of Conditional Correlation Matrices in Graph Learning
- URL: http://arxiv.org/abs/2506.10628v1
- Date: Thu, 12 Jun 2025 12:13:11 GMT
- Title: Leveraging Low-rank Factorizations of Conditional Correlation Matrices in Graph Learning
- Authors: Thu Ha Phi, Alexandre Hippert-Ferrer, Florent Bouchard, Arnaud Breloy,
- Abstract summary: This paper addresses the problem of learning an undirected graph from data gathered at each nodes.<n>The corresponding graph learning problem then scales to the squares of the number of variables (nodes)<n>We propose a graph learning framework that leverages a low-rank factorization of the conditional correlation matrix.
- Score: 46.49143964254245
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper addresses the problem of learning an undirected graph from data gathered at each nodes. Within the graph signal processing framework, the topology of such graph can be linked to the support of the conditional correlation matrix of the data. The corresponding graph learning problem then scales to the squares of the number of variables (nodes), which is usually problematic at large dimension. To tackle this issue, we propose a graph learning framework that leverages a low-rank factorization of the conditional correlation matrix. In order to solve for the resulting optimization problems, we derive tools required to apply Riemannian optimization techniques for this particular structure. The proposal is then particularized to a low-rank constrained counterpart of the GLasso algorithm, i.e., the penalized maximum likelihood estimation of a Gaussian graphical model. Experiments on synthetic and real data evidence that a very efficient dimension-versus-performance trade-off can be achieved with this approach.
Related papers
- Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals [18.45931641798935]
This paper introduces Polynomial Graphical Lasso (PGL), a new approach to learning graph structures from nodal signals.
Our key contribution lies in the signals as Gaussian and stationary on the graph, enabling the development of a graph-learning lasso.
arXiv Detail & Related papers (2024-04-03T10:19:53Z) - Gradient-Based Spectral Embeddings of Random Dot Product Graphs [7.612218105739107]
In this paper, we show how to better solve the embedding problem of the Random Dot Product Graph (RDPG)
We develop a novel feasible optimization method in the resulting manifold.
Our open-source algorithm implementations are scalable, and unlike the they are robust to missing edge data and can track slowly, latent positions from streaming graphs.
arXiv Detail & Related papers (2023-07-25T21:09:55Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
gradient scarcity occurs when learning graphs by minimizing a loss on a subset of nodes causes edges between unlabelled nodes that are far from labelled ones to receive zero gradients.
We give a precise mathematical characterization of this phenomenon, and prove it also emerges in bilevel optimization.
To alleviate this issue, we study several solutions: we propose to resort to latent graph learning using a Graph-to-Graph model (G2G), graph regularization to impose a prior structure on the graph, or optimizing on a larger graph than the original one with a reduced diameter.
arXiv Detail & Related papers (2023-03-24T12:37:43Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.