Contrastive Matrix Completion with Denoising and Augmented Graph Views for Robust Recommendation
- URL: http://arxiv.org/abs/2506.10658v1
- Date: Thu, 12 Jun 2025 12:47:35 GMT
- Title: Contrastive Matrix Completion with Denoising and Augmented Graph Views for Robust Recommendation
- Authors: Narges Nemati, Mostafa Haghir Chehreghani,
- Abstract summary: Matrix completion is a widely adopted framework in recommender systems.<n>We propose a novel method called Matrix Completion using Contrastive Learning (MCCL)<n>Our approach not only improves the numerical accuracy of the predicted scores--but also produces superior rankings with improvements of up to 36% in ranking metrics.
- Score: 1.0128808054306186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matrix completion is a widely adopted framework in recommender systems, as predicting the missing entries in the user-item rating matrix enables a comprehensive understanding of user preferences. However, current graph neural network (GNN)-based approaches are highly sensitive to noisy or irrelevant edges--due to their inherent message-passing mechanisms--and are prone to overfitting, which limits their generalizability. To overcome these challenges, we propose a novel method called Matrix Completion using Contrastive Learning (MCCL). Our approach begins by extracting local neighborhood subgraphs for each interaction and subsequently generates two distinct graph representations. The first representation emphasizes denoising by integrating GNN layers with an attention mechanism, while the second is obtained via a graph variational autoencoder that aligns the feature distribution with a standard prior. A mutual learning loss function is employed during training to gradually harmonize these representations, enabling the model to capture common patterns and significantly enhance its generalizability. Extensive experiments on several real-world datasets demonstrate that our approach not only improves the numerical accuracy of the predicted scores--achieving up to a 0.8% improvement in RMSE--but also produces superior rankings with improvements of up to 36% in ranking metrics.
Related papers
- Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.<n>We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
arXiv Detail & Related papers (2025-01-08T20:11:09Z) - Multi-Channel Hypergraph Contrastive Learning for Matrix Completion [37.05130230844348]
Graph neural networks (GNNs) have been widely used in matrix completion, which captures users' preferences over items.
We propose a Multi-Channel Hypergraph Contrastive Learning framework for matrix completion, named MHCL.
Experiments on five public datasets demonstrate that the proposed method significantly outperforms the current state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-02T22:59:36Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Impression-Informed Multi-Behavior Recommender System: A Hierarchical
Graph Attention Approach [4.03161352925235]
We introduce textbfHierarchical textbfMulti-behavior textbfGraph Attention textbfNetwork (HMGN)
This pioneering framework leverages attention mechanisms to discern information from both inter and intra-behaviors.
We register a notable performance boost of up to 64% in NDCG@100 metrics over conventional graph neural network methods.
arXiv Detail & Related papers (2023-09-06T17:09:43Z) - Learning for Transductive Threshold Calibration in Open-World Recognition [83.35320675679122]
We introduce OpenGCN, a Graph Neural Network-based transductive threshold calibration method with enhanced robustness and adaptability.
Experiments across open-world visual recognition benchmarks validate OpenGCN's superiority over existing posthoc calibration methods for open-world threshold calibration.
arXiv Detail & Related papers (2023-05-19T23:52:48Z) - A Simplified Framework for Contrastive Learning for Node Representations [2.277447144331876]
We investigate the potential of deploying contrastive learning in combination with Graph Neural Networks for embedding nodes in a graph.
We show that the quality of the resulting embeddings and training time can be significantly improved by a simple column-wise postprocessing of the embedding matrix.
This modification yields improvements in downstream classification tasks of up to 1.5% and even beats existing state-of-the-art approaches on 6 out of 8 different benchmarks.
arXiv Detail & Related papers (2023-05-01T02:04:36Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
Graph representation learning has attracted much attention in supporting high quality candidate search at scale.
Despite its effectiveness in learning embedding vectors for objects in the user-item interaction network, the computational costs to infer users' preferences in continuous embedding space are tremendous.
We propose a simple yet effective discrete representation learning framework to jointly learn continuous and discrete codes.
arXiv Detail & Related papers (2020-03-04T06:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.