Learning for Transductive Threshold Calibration in Open-World Recognition
- URL: http://arxiv.org/abs/2305.12039v2
- Date: Fri, 22 Mar 2024 23:39:54 GMT
- Title: Learning for Transductive Threshold Calibration in Open-World Recognition
- Authors: Qin Zhang, Dongsheng An, Tianjun Xiao, Tong He, Qingming Tang, Ying Nian Wu, Joseph Tighe, Yifan Xing, Stefano Soatto,
- Abstract summary: We introduce OpenGCN, a Graph Neural Network-based transductive threshold calibration method with enhanced robustness and adaptability.
Experiments across open-world visual recognition benchmarks validate OpenGCN's superiority over existing posthoc calibration methods for open-world threshold calibration.
- Score: 83.35320675679122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In deep metric learning for visual recognition, the calibration of distance thresholds is crucial for achieving desired model performance in the true positive rates (TPR) or true negative rates (TNR). However, calibrating this threshold presents challenges in open-world scenarios, where the test classes can be entirely disjoint from those encountered during training. We define the problem of finding distance thresholds for a trained embedding model to achieve target performance metrics over unseen open-world test classes as open-world threshold calibration. Existing posthoc threshold calibration methods, reliant on inductive inference and requiring a calibration dataset with a similar distance distribution as the test data, often prove ineffective in open-world scenarios. To address this, we introduce OpenGCN, a Graph Neural Network-based transductive threshold calibration method with enhanced adaptability and robustness. OpenGCN learns to predict pairwise connectivity for the unlabeled test instances embedded in a graph to determine its TPR and TNR at various distance thresholds, allowing for transductive inference of the distance thresholds which also incorporates test-time information. Extensive experiments across open-world visual recognition benchmarks validate OpenGCN's superiority over existing posthoc calibration methods for open-world threshold calibration.
Related papers
- Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples.
High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability.
This research introduces a novel loss function called Focal Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples.
arXiv Detail & Related papers (2024-10-23T23:06:50Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
arXiv Detail & Related papers (2024-07-02T15:05:19Z) - C-TPT: Calibrated Test-Time Prompt Tuning for Vision-Language Models via Text Feature Dispersion [54.81141583427542]
In deep learning, test-time adaptation has gained attention as a method for model fine-tuning without the need for labeled data.
This paper explores calibration during test-time prompt tuning by leveraging the inherent properties of CLIP.
We present a novel method, Calibrated Test-time Prompt Tuning (C-TPT), for optimizing prompts during test-time with enhanced calibration.
arXiv Detail & Related papers (2024-03-21T04:08:29Z) - Threshold-Consistent Margin Loss for Open-World Deep Metric Learning [42.03620337000911]
Existing losses used in deep metric learning (DML) for image retrieval often lead to highly non-uniform intra-class and inter-class representation structures.
Inconsistency often complicates the threshold selection process when deploying commercial image retrieval systems.
We propose a novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in the operating characteristics across classes.
arXiv Detail & Related papers (2023-07-08T21:16:41Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - OpenAUC: Towards AUC-Oriented Open-Set Recognition [151.5072746015253]
Traditional machine learning follows a close-set assumption that the training and test set share the same label space.
Open-Set Recognition (OSR) aims to make correct predictions on both close-set samples and open-set samples.
To fix these issues, we propose a novel metric named OpenAUC.
arXiv Detail & Related papers (2022-10-22T08:54:15Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Evaluating Uncertainty Calibration for Open-Set Recognition [5.8022510096020525]
Deep neural networks (DNNs) suffer from providing overconfident probabilities on out-of-distribution (OOD) data.
We evaluate popular calibration techniques for open-set conditions in a way that is distinctly different from the conventional evaluation of calibration methods on OOD data.
arXiv Detail & Related papers (2022-05-15T02:08:35Z) - Calibrated neighborhood aware confidence measure for deep metric
learning [0.0]
Deep metric learning has been successfully applied to problems in few-shot learning, image retrieval, and open-set classifications.
measuring the confidence of a deep metric learning model and identifying unreliable predictions is still an open challenge.
This paper focuses on defining a calibrated and interpretable confidence metric that closely reflects its classification accuracy.
arXiv Detail & Related papers (2020-06-08T21:05:38Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
We propose the first framework (UCNet) to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose probabilistic RGB-D saliency detection network.
arXiv Detail & Related papers (2020-04-13T04:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.