Neural at ArchEHR-QA 2025: Agentic Prompt Optimization for Evidence-Grounded Clinical Question Answering
- URL: http://arxiv.org/abs/2506.10751v1
- Date: Thu, 12 Jun 2025 14:36:18 GMT
- Title: Neural at ArchEHR-QA 2025: Agentic Prompt Optimization for Evidence-Grounded Clinical Question Answering
- Authors: Sai Prasanna Teja Reddy Bogireddy, Abrar Majeedi, Viswanatha Reddy Gajjala, Zhuoyan Xu, Siddhant Rai, Vaishnav Potlapalli,
- Abstract summary: We present Neural, the runner-up in the BioNLP 2025 Arch-QA shared task on evidence-grounded clinical QA.<n>Our proposed method decouples the task into (1) sentence-level evidence identification and (2) answer synthesis with explicit citations.<n>A self-consistency voting scheme further improves evidence recall without sacrificing precision.
- Score: 3.3260862557368926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated question answering (QA) over electronic health records (EHRs) can bridge critical information gaps for clinicians and patients, yet it demands both precise evidence retrieval and faithful answer generation under limited supervision. In this work, we present Neural, the runner-up in the BioNLP 2025 ArchEHR-QA shared task on evidence-grounded clinical QA. Our proposed method decouples the task into (1) sentence-level evidence identification and (2) answer synthesis with explicit citations. For each stage, we automatically explore the prompt space with DSPy's MIPROv2 optimizer, jointly tuning instructions and few-shot demonstrations on the development set. A self-consistency voting scheme further improves evidence recall without sacrificing precision. On the hidden test set, our method attains an overall score of 51.5, placing second stage while outperforming standard zero-shot and few-shot prompting by over 20 and 10 points, respectively. These results indicate that data-driven prompt optimization is a cost-effective alternative to model fine-tuning for high-stakes clinical QA, advancing the reliability of AI assistants in healthcare.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - UTSA-NLP at ArchEHR-QA 2025: Improving EHR Question Answering via Self-Consistency Prompting [5.882312167168893]
We describe our system for answering clinical questions using electronic health records.<n>Our approach uses large language models in two steps: first, to find sentences relevant to a clinician's question, and second, to generate a short, citation-supported response.
arXiv Detail & Related papers (2025-06-05T21:07:55Z) - TrialMatchAI: An End-to-End AI-powered Clinical Trial Recommendation System to Streamline Patient-to-Trial Matching [0.0]
We present TrialMatchAI, an AI-powered recommendation system that automates patient-to-trial matching.<n>Built on fine-tuned, open-source large language models, TrialMatchAI ensures transparency and maintains a lightweight deployment footprint.<n>In real-world validation, 92 percent of oncology patients had at least one relevant trial retrieved within the top 20 recommendations.
arXiv Detail & Related papers (2025-05-13T12:39:06Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
This paper explores generating Clinical QA data using large language models (LLMs) in a zero-shot setting.<n>We find that naive prompting often results in easy questions that do not reflect the complexity of clinical scenarios.<n>Experiments on two Clinical QA datasets demonstrate that our method generates more challenging questions, significantly improving fine-tuning performance over baselines.
arXiv Detail & Related papers (2024-12-05T19:35:41Z) - Rene: A Pre-trained Multi-modal Architecture for Auscultation of Respiratory Diseases [5.810320353233697]
We introduce Rene, a pioneering large-scale model tailored for respiratory sound recognition.
Our innovative approach applies a pre-trained speech recognition model to process respiratory sounds.
We have developed a real-time respiratory sound discrimination system utilizing the Rene architecture.
arXiv Detail & Related papers (2024-05-13T03:00:28Z) - Zero-Shot Clinical Trial Patient Matching with LLMs [40.31971412825736]
Large language models (LLMs) offer a promising solution to automated screening.
We design an LLM-based system which, given a patient's medical history as unstructured clinical text, evaluates whether that patient meets a set of inclusion criteria.
Our system achieves state-of-the-art scores on the n2c2 2018 cohort selection benchmark.
arXiv Detail & Related papers (2024-02-05T00:06:08Z) - K-QA: A Real-World Medical Q&A Benchmark [12.636564634626422]
We construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on K Health.
We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements.
We evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes.
arXiv Detail & Related papers (2024-01-25T20:11:04Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Question-Answering System Extracts Information on Injection Drug Use
from Clinical Notes [4.537953996010351]
Injection drug use (IDU) is a dangerous health behavior that increases mortality and morbidity.
The only place IDU information can be indicated is unstructured free-text clinical notes.
We design and demonstrate a question-answering (QA) framework to extract information on IDU from clinical notes.
arXiv Detail & Related papers (2023-05-15T16:37:00Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.