SlotPi: Physics-informed Object-centric Reasoning Models
- URL: http://arxiv.org/abs/2506.10778v1
- Date: Thu, 12 Jun 2025 14:53:36 GMT
- Title: SlotPi: Physics-informed Object-centric Reasoning Models
- Authors: Jian Li, Wan Han, Ning Lin, Yu-Liang Zhan, Ruizhi Chengze, Haining Wang, Yi Zhang, Hongsheng Liu, Zidong Wang, Fan Yu, Hao Sun,
- Abstract summary: We introduce SlotPi, a physics-informed object-centric reasoning model.<n>Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets.<n>We have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities.
- Score: 37.32107835829927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and reasoning about dynamics governed by physical laws through visual observation, akin to human capabilities in the real world, poses significant challenges. Currently, object-centric dynamic simulation methods, which emulate human behavior, have achieved notable progress but overlook two critical aspects: 1) the integration of physical knowledge into models. Humans gain physical insights by observing the world and apply this knowledge to accurately reason about various dynamic scenarios; 2) the validation of model adaptability across diverse scenarios. Real-world dynamics, especially those involving fluids and objects, demand models that not only capture object interactions but also simulate fluid flow characteristics. To address these gaps, we introduce SlotPi, a slot-based physics-informed object-centric reasoning model. SlotPi integrates a physical module based on Hamiltonian principles with a spatio-temporal prediction module for dynamic forecasting. Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets. Furthermore, we have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities. The model's robust performance across all datasets underscores its strong adaptability, laying a foundation for developing more advanced world models.
Related papers
- PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis [62.283499219361595]
PhysGaia is a physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS)<n>Our dataset provides complex dynamic scenarios with rich interactions among multiple objects.<n>PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation.
arXiv Detail & Related papers (2025-06-03T12:19:18Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - Learning Physical Dynamics for Object-centric Visual Prediction [7.395357888610685]
The ability to model the underlying dynamics of visual scenes and reason about the future is central to human intelligence.
This paper proposes an unsupervised object-centric prediction model that makes future predictions by learning visual dynamics between objects.
arXiv Detail & Related papers (2024-03-15T07:45:25Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhy is a novel benchmark for assessing machine physical commonsense.
We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy.
We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models.
arXiv Detail & Related papers (2024-02-09T01:09:21Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
We propose a unified framework that can jointly learn visual concepts and infer physics models of objects from videos and language.
This is achieved by seamlessly integrating three components: a visual perception module, a concept learner, and a differentiable physics engine.
arXiv Detail & Related papers (2021-10-28T17:59:13Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.