Advanced fraud detection using machine learning models: enhancing financial transaction security
- URL: http://arxiv.org/abs/2506.10842v1
- Date: Thu, 12 Jun 2025 15:59:25 GMT
- Title: Advanced fraud detection using machine learning models: enhancing financial transaction security
- Authors: Nudrat Fariha, Md Nazmuddin Moin Khan, Md Iqbal Hossain, Syed Ali Reza, Joy Chakra Bortty, Kazi Sharmin Sultana, Md Shadidur Islam Jawad, Saniah Safat, Md Abdul Ahad, Maksuda Begum,
- Abstract summary: This research presents an end-to-end, feature-rich machine learning framework for detecting credit card transaction anomalies and fraud using real-world data.
- Score: 0.3370543514515051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of digital payments has accelerated the need for intelligent and scalable systems to detect fraud. This research presents an end-to-end, feature-rich machine learning framework for detecting credit card transaction anomalies and fraud using real-world data. The study begins by merging transactional, cardholder, merchant, and merchant category datasets from a relational database to create a unified analytical view. Through the feature engineering process, we extract behavioural signals such as average spending, deviation from historical patterns, transaction timing irregularities, and category frequency metrics. These features are enriched with temporal markers such as hour, day of week, and weekend indicators to expose all latent patterns that indicate fraudulent behaviours. Exploratory data analysis reveals contextual transaction trends across all the dataset features. Using the transactional data, we train and evaluate a range of unsupervised models: Isolation Forest, One Class SVM, and a deep autoencoder trained to reconstruct normal behavior. These models flag the top 1% of reconstruction errors as outliers. PCA visualizations illustrate each models ability to separate anomalies into a two-dimensional latent space. We further segment the transaction landscape using K-Means clustering and DBSCAN to identify dense clusters of normal activity and isolate sparse, suspicious regions.
Related papers
- Semi-supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation [28.745101225936697]
We propose a semi-supervised graph neural network for fraud detection.<n>Specifically, we leverage transaction records to construct a temporal transaction graph.<n>We then pass messages among the nodes through a Gated Temporal Attention Network (GTAN) to learn the transaction representation.
arXiv Detail & Related papers (2024-12-24T08:48:48Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Towards a Foundation Purchasing Model: Pretrained Generative
Autoregression on Transaction Sequences [0.0]
We present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions.
We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions.
arXiv Detail & Related papers (2024-01-03T09:32:48Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Fraud Dataset Benchmark and Applications [25.184342958800293]
Fraud dataset Benchmark (FDB) is a compilation of publicly available datasets catered to fraud detection.
FDB comprises variety of fraud related tasks, ranging from identifying fraudulent card-not-present transactions, detecting bot attacks, classifying malicious URLs, estimating risk of loan default to content moderation.
Python based library for FDB provides a consistent API for data loading with standardized training and testing splits.
arXiv Detail & Related papers (2022-08-30T17:35:39Z) - Credit card fraud detection - Classifier selection strategy [0.0]
Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds.
fraud data sets are diverse and exhibit inconsistent characteristics.
We propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets.
arXiv Detail & Related papers (2022-08-25T07:13:42Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Credit card fraud detection using machine learning: A survey [0.5134435281973136]
We study data-driven credit card fraud detection particularities and several machine learning methods to address each of its intricate challenges.
In particular, we first characterize a typical credit card detection task: the dataset and its attributes, the metric choice along with some methods to handle such unbalanced datasets.
arXiv Detail & Related papers (2020-10-13T15:35:32Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.