Coupled reaction and diffusion governing interface evolution in solid-state batteries
- URL: http://arxiv.org/abs/2506.10944v1
- Date: Thu, 12 Jun 2025 17:49:05 GMT
- Title: Coupled reaction and diffusion governing interface evolution in solid-state batteries
- Authors: Jingxuan Ding, Laura Zichi, Matteo Carli, Menghang Wang, Albert Musaelian, Yu Xie, Boris Kozinsky,
- Abstract summary: We conduct large-scale explicit reactive simulations with quantum accuracy for a symmetric battery cell.<n>We explain experimental observations of the SEI formations and elucidate the Li creep mechanisms, critical to dendrite initiation.<n>Our approach is to crease a digital twin from first principles, without adjustable parameters fitted to experiment.
- Score: 4.707991478885645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and controlling the atomistic-level reactions governing the formation of the solid-electrolyte interphase (SEI) is crucial for the viability of next-generation solid state batteries. However, challenges persist due to difficulties in experimentally characterizing buried interfaces and limits in simulation speed and accuracy. We conduct large-scale explicit reactive simulations with quantum accuracy for a symmetric battery cell, {\symcell}, enabled by active learning and deep equivariant neural network interatomic potentials. To automatically characterize the coupled reactions and interdiffusion at the interface, we formulate and use unsupervised classification techniques based on clustering in the space of local atomic environments. Our analysis reveals the formation of a previously unreported crystalline disordered phase, Li$_2$S$_{0.72}$P$_{0.14}$Cl$_{0.14}$, in the SEI, that evaded previous predictions based purely on thermodynamics, underscoring the importance of explicit modeling of full reaction and transport kinetics. Our simulations agree with and explain experimental observations of the SEI formations and elucidate the Li creep mechanisms, critical to dendrite initiation, characterized by significant Li motion along the interface. Our approach is to crease a digital twin from first principles, without adjustable parameters fitted to experiment. As such, it offers capabilities to gain insights into atomistic dynamics governing complex heterogeneous processes in solid-state synthesis and electrochemistry.
Related papers
- Learning Potential Energy Surfaces of Hydrogen Atom Transfer Reactions in Peptides [0.562479170374811]
Hydrogen atom transfer (HAT) reactions are essential in many biological processes, such as radical migration in damaged proteins.<n>Machine-learned potentials offer an alternative, able to learn potential energy surfaces with near-quantum accuracy.<n>Here, we systematically generate HAT configurations in peptides to build large datasets using semiempirical methods and DFT.
arXiv Detail & Related papers (2025-08-01T12:21:49Z) - Optical lattice quantum simulator of dynamics beyond Born-Oppenheimer [45.29832252085144]
We propose a platform based on ultra-cold fermionic molecules trapped in optical lattices to simulate nonadiabatic effects.<n>We benchmark our proposal by studying the scattering of an electron or a proton against a hydrogen atom.
arXiv Detail & Related papers (2025-03-30T14:46:26Z) - Chemistry-aware battery degradation prediction under simulated real-world cyclic protocols [30.126655904719065]
Battery degradation is governed by complex and randomized cyclic conditions.<n>Electrical signals provide abundant information, such as voltage fluctuations, which may probe the degradation mechanisms.<n>Here, we present chemistry-aware battery degradation prediction under dynamic conditions with machine learning.
arXiv Detail & Related papers (2025-03-25T07:01:50Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
We propose an approach for the quick and reliable screening of ionic conductors through the analysis of a universal interatomic potential.<n>Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations.<n>Our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Trapped-Ion Quantum Simulation of Electron Transfer Models with Tunable Dissipation [1.159879739037684]
We experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal.<n>We observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics.
arXiv Detail & Related papers (2024-05-16T18:03:17Z) - Machine Learning for Polaritonic Chemistry: Accessing chemical kinetics [0.0]
We establish a framework based on a combination of machine learning (ML) models, trained using density-functional theory calculations, and molecular dynamics.
We evaluate strong coupling, changes in reaction rate constant, and their influence on enthalpy and entropy for the deprotection reaction of 1-phenyl-2-trimethylsilylacetylene.
While we find qualitative agreement with critical experimental observations, especially with regard to the changes in kinetics, we also find differences in comparison with previous theoretical predictions.
arXiv Detail & Related papers (2023-11-16T10:08:44Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization [0.1469945565246172]
In this work, we suggest an end-to-end model which directly predicts per-atom energy from the coordinates of particles.
We tested our model against several challenges in molecular simulation problems, including periodic boundary condition (PBC), $n$-body interaction, and binary composition.
arXiv Detail & Related papers (2021-10-27T12:18:25Z) - Generalized Discrete Truncated Wigner Approximation for Nonadiabtic
Quantum-Classical Dynamics [0.0]
We introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA)
GDTWA samples the electron degrees of freedom in a discrete phase space, and forbids an unphysical growth of electronic state populations.
Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
arXiv Detail & Related papers (2021-04-14T21:53:35Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.