論文の概要: A Framework for Non-Linear Attention via Modern Hopfield Networks
- arxiv url: http://arxiv.org/abs/2506.11043v1
- Date: Wed, 21 May 2025 10:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.509007
- Title: A Framework for Non-Linear Attention via Modern Hopfield Networks
- Title(参考訳): 近代ホップフィールドネットワークによる非線形注意フレームワーク
- Authors: Ahmed Farooq,
- Abstract要約: 現代ホップフィールドネットワーク(MNH)の線に沿ったエネルギー関数計算を提案する。
エネルギーランドスケープを埋め込んだ$n$のトークンは、その勾配が注意に一致するように定義される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose an energy functional along the lines of Modern Hopfield Networks (MNH), the stationary points of which correspond to the attention due to Vaswani et al. [12], thus unifying both frameworks. The minima of this landscape form "context wells" - stable configurations that encapsulate the contextual relationships among tokens. A compelling picture emerges: across $n$ token embeddings an energy landscape is defined whose gradient corresponds to the attention computation. Non-linear attention mechanisms offer a means to enhance the capabilities of transformer models for various sequence modeling tasks by improving the model's understanding of complex relationships, learning of representations, and overall efficiency and performance. A rough analogy can be seen via cubic splines which offer a richer representation of non-linear data where a simpler linear model may be inadequate. This approach can be used for the introduction of non-linear heads in transformer based models such as BERT, [6], etc.
- Abstract(参考訳): 本稿では,最新のホップフィールドネットワーク(MNH, Modern Hopfield Networks)の線に沿ったエネルギー関数を提案する。
このランドスケープのミニマは "context Wells" - トークン間のコンテキスト関係をカプセル化する安定した構成を形成する。
エネルギーランドスケープを埋め込んだ$n$トークンが定義され、その勾配が注意計算に対応する。
非線形アテンションメカニズムは、複雑な関係の理解、表現の学習、全体的な効率と性能を改善することで、様々なシーケンスモデリングタスクのためのトランスフォーマーモデルの能力を高める手段を提供する。
より単純な線形モデルが不十分な非線型データのよりリッチな表現を提供する立方体スプラインを通して、粗い類似を見ることができる。
このアプローチは、BERTや[6]などのトランスフォーマーモデルにおける非線形ヘッドの導入に使用することができる。
関連論文リスト
- Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers [0.0]
変換器の注意機構をグラフ演算として再構成する。
スパース GIN-Attention はスパース GIN を用いた微調整手法である。
論文 参考訳(メタデータ) (2025-01-04T22:30:21Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
トランスフォーマーベースのモデルは、様々な領域で例外的な性能を示している。
動作方法や期待されるダイナミクスについてはほとんど分かっていない。
非平衡状態における非対称ホップフィールドネットワークの研究に手法を用いる。
論文 参考訳(メタデータ) (2024-06-11T13:29:34Z) - Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory [11.3128832831327]
Transformerのサイズが大きくなると、パフォーマンスが向上するとは限らない。
本稿では,変圧器を用いた言語モデルの事前学習において,記憶に光を当てる理論的枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-14T15:48:36Z) - On the Emergence of Cross-Task Linearity in the Pretraining-Finetuning Paradigm [47.55215041326702]
我々は、共通の事前訓練されたチェックポイントから、クロスタスク線形性(CTL)と呼ばれる異なるタスクに微調整されたモデルにおいて、興味深い線形現象を発見する。
2つの微調整モデルの重みを線形に補間すると、重み補間モデルの特徴は各層における2つの微調整モデルの特徴の線形性にほぼ等しいことが示される。
プレトレーニング-ファインタニングのパラダイムでは、ニューラルネットワークは、パラメータ空間から特徴空間への写像である線形写像として概ね機能する。
論文 参考訳(メタデータ) (2024-02-06T03:28:36Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
本稿では,一定曲率空間の積を完全に操作するトランスフォーマーの一般化を提案する。
また、非ユークリッド注意に対するカーネル化されたアプローチを提供し、ノード数とエッジ数に線形に時間とメモリコストでモデルを実行できるようにします。
論文 参考訳(メタデータ) (2023-09-08T02:44:37Z) - B-cos Alignment for Inherently Interpretable CNNs and Vision
Transformers [97.75725574963197]
本稿では,深層ニューラルネットワーク(DNN)の学習における重み付けの促進による解釈可能性の向上に向けた新たな方向性を提案する。
このような変換の列は、完全なモデル計算を忠実に要約する単一の線形変換を誘導することを示す。
得られた説明は視覚的品質が高く,定量的解釈可能性指標下では良好に機能することを示す。
論文 参考訳(メタデータ) (2023-06-19T12:54:28Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。